2D Co-incorporated hydroxyapatite nanoarchitecture as a potential efficient oxygen evolution cocatalyst for boosting photoelectrochemical water splitting on Fe2O3 photoanode

被引:65
|
作者
Chong, Ruifeng [1 ]
Du, Yuqing [1 ]
Chang, Zhixian [1 ]
Jia, Yushuai [2 ]
Qiao, Yan [3 ]
Liu, Shanhu [4 ]
Liu, Yong [1 ]
Zhou, Yanmei [4 ]
Li, Deliang [1 ]
机构
[1] Henan Univ, Coll Chem & Chem Engn, Inst Upconvers Nanoscale Mat, Kaifeng 475004, Peoples R China
[2] Jiangxi Normal Univ, Coll Chem & Chem Engn, Inst Adv Mat, Nanchang 330022, Jiangxi, Peoples R China
[3] Zhengzhou Univ, Basic Med Coll, Dept Pathophysiol, Zhengzhou 450001, Henan, Peoples R China
[4] Henan Univ, Coll Chem & Chem Engn, Henan Joint Int Res Lab Environm Pollut Control M, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
Co-incorporated hydroxyapatite; Hematite; Water oxidation; Photoelectrochemical; Neutral electrolyte; ALPHA-FE2O3; PHOTOANODE; NANOROD ARRAYS; OXIDATION; PHOSPHATE; CATALYST; ELECTROCATALYSTS; PHOTOCATALYST; NANOARRAYS; TITANIUM; BIVO4;
D O I
10.1016/j.apcatb.2019.03.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The serious charge recombination together with the sluggish water oxidation kinetics have largely limited the practical application of hematite (Fe2O3) in photoelectrochemical (PEC) water splitting. Surface modification with oxygen evolution cocatalyst is an efficient strategy to address the both issues. Herein, a novel 2D oxygen evolution cocatalyst, namely Co-incorporated hydroxyapatite (Co-HAP) nanoarchitecture, was rationally designed and decorated on Fe2O3 photoanode. The resulting Co-HAP decorated Fe2O3 (Co-HAP/Fe2O3) exhibited excellent PEC water splitting with a high photocurrent density of 2.25 mA cm(-2) at 1.23 V vs. RHE in neutral electrolyte, which is ca. 9.78 times that for bare Fe203. Moreover, the onset potential displayed a 200 mV cathodic shift, indicating an accelerated water oxidation kinetics over Fe2O3. PEC characterizations revealed Co-HAP could not only significantly improve the charge-separation efficiency but also could enhance the surface charge-separation efficiency in the bulk and on the surface of Fe2O3. Comprehensive investigations unveiled the interfacial negative electrostatic field and the increased electrical conductivity arising from Co-HAP decoration were of great benefit to improve the charge separation and inhibit surface charge recombination, while the 2D architecture of Co-HAP offered high surface area and abundant exposed Co active sites, ultimately boosted PEC water splitting over Fe203. Owing to the superior ion-exchange ability of HAP, the strategy presented here would open a new vane to explore highly efficient oxygen evolution cocatalyst.
引用
收藏
页码:224 / 233
页数:10
相关论文
共 50 条
  • [21] In situ formation of a Co-MOF/Ti-Fe2O3 photoanode for efficient photoelectrochemical water splitting
    Ba, Kaikai
    Li, Hongda
    Zhang, Kai
    Lin, Yanhong
    Zhu, Wanchun
    Xie, Tengfeng
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (43) : 17603 - 17610
  • [22] Photoelectrochemical Epoxidation of Cyclohexene on an ?-Fe2O3 Photoanode Using Water as the Oxygen Source
    Tayebi, Meysam
    Masoumi, Zohreh
    Tayyebi, Ahmad
    Kim, Jun-Hwan
    Lee, Hyungwoo
    Seo, Bongkuk
    Lim, Choong-Sun
    Kim, Hyeon-Gook
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (16) : 20053 - 20063
  • [23] Physical and photoelectrochemical characterizations of hematite α-Fe2O3: Application to photocatalytic oxygen evolution
    Boumaza, S.
    Boudjemaa, A.
    Omeiri, S.
    Bouarab, R.
    Bouguelia, A.
    Trari, M.
    SOLAR ENERGY, 2010, 84 (04) : 715 - 721
  • [24] α-Fe2O3/TiO2 heterostructured photoanode on titanium substrate for photoelectrochemical water electrolysis
    Venkatkarthick, R.
    Davidson, D. Jonas
    Ravichandran, S.
    Vasudevan, S.
    Sozhan, G.
    MATERIALS CHEMISTRY AND PHYSICS, 2017, 199 : 249 - 256
  • [25] Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate
    Chen, Dong
    Liu, Zhifeng
    Zhou, Miao
    Wu, Peidong
    Wei, Jindong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 742 : 918 - 927
  • [26] Heterojunction Fe2O3-SnO2 Nanostructured Photoanode for Efficient Photoelectrochemical Water Splitting
    Hyun Soo Han
    Sun Shin
    Jun Hong Noh
    In Sun Cho
    Kug Sun Hong
    JOM, 2014, 66 : 664 - 669
  • [27] Heterojunction Fe2O3-SnO2 Nanostructured Photoanode for Efficient Photoelectrochemical Water Splitting
    Han, Hyun Soo
    Shin, Sun
    Noh, Jun Hong
    Cho, In Sun
    Hong, Kug Sun
    JOM, 2014, 66 (04) : 664 - 669
  • [28] Microstructural Effect on the Photoelectrochemical Performance of Hematite-Fe2O3 Photoanode for Water Splitting
    Noh, Kyung-Jong
    Kim, Bo-Ra
    Yoon, Gea-Jin
    Jung, Sang-Chul
    Kang, Wooseung
    Kim, Sun-Jae
    ELECTRONIC MATERIALS LETTERS, 2012, 8 (03) : 345 - 350
  • [29] Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode
    Yang, Jie
    Bao, Chunxiong
    Yu, Tao
    Hu, Yingfei
    Luo, Wenjun
    Zhu, Weidong
    Fu, Gao
    Li, Zhaosheng
    Gao, Hao
    Li, Faming
    Zou, Zhigang
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (48) : 26482 - 26490
  • [30] A ternary nanostructured α-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting
    Fu Yanming
    Dong Chung-Li
    Zhou Wu
    Lu Ying-Rui
    Huang Yu-Cheng
    Liu Ya
    Guo Penghui
    Zhao Liang
    Chou Wu-Ching
    Shen Shaohua
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 260 (260)