Generalised Weyl theorems and spectral pollution in the Galerkin method

被引:12
作者
Boulton, Lyonell [1 ,2 ]
Boussaid, Nabile [3 ]
Lewin, Mathieu [4 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] CNRS, Dept Math, UFR Sci & Tech, UMR 6623, F-25030 Besancon, France
[4] Univ Cergy Pontoise, CNRS, Dept Math, UMR 8088, F-95000 Cergy Pontoise, France
基金
英国工程与自然科学研究理事会;
关键词
Weyl's Theorem; generalised essential spectrum; spectral pollution; Galerkin method;
D O I
10.4171/JST/32
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a general framework for investigating spectral pollution in the Galerkin method. We show how this phenomenon is characterised via the existence of particular Weyl sequences which are singular in a suitable sense. For a semi-bounded selfadjoint operator A we identify relative compactness conditions on a selfadjoint perturbation B ensuring that the limiting set of spectral pollution of A and B coincide. Our results show that, under perturbation, this limiting set behaves in a similar fashion as the essential spectrum.
引用
收藏
页码:329 / 354
页数:26
相关论文
共 33 条
[1]   Numerical computation of eigenvalues in spectral gaps of Sturm-Liouville operators [J].
Aceto, L ;
Ghelardoni, P ;
Marletta, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) :453-470
[2]  
[Anonymous], 2002, J NUMER MATH
[3]  
[Anonymous], 1995, CAMBRIDGE STUDIES AD
[4]  
[Anonymous], 1972, METHODS MODERN MATH
[5]  
[Anonymous], RESULTS MATH
[6]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[7]   THE ESSENTIAL SPECTRUM OF SOME MATRIX OPERATORS [J].
ATKINSON, FV ;
LANGER, H ;
MENNICKEN, R ;
SHKALIKOV, AA .
MATHEMATISCHE NACHRICHTEN, 1994, 167 :5-20
[8]  
Boffi D, 1998, ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, P180
[9]  
Boffi D, 2000, MATH COMPUT, V69, P121, DOI 10.1090/S0025-5718-99-01072-8
[10]  
Boulton L., 2010, P ROY SOC LOND A MAT, V467, P264