Electrochemical Performance of rGO/NiCo2O4@ZnCo2O4 Ternary Composite Material and the Fabrication of an all-Solid-State Supercapacitor Device

被引:59
作者
Mary, A. Juliet Christina [1 ]
Sathish, C. I. [2 ]
Vinu, Ajayan [2 ]
Bose, A. Chandra [1 ]
机构
[1] Natl Inst Technol, Dept Phys, Nanomat Lab, Tiruchirappalli 620015, Tamil Nadu, India
[2] Univ Newcastle, Global Innovat Ctr Adv Nanomat, Callaghan, NSW 2308, Australia
关键词
REDUCED GRAPHENE OXIDE; OXYGEN-VACANCIES; ASYMMETRIC SUPERCAPACITORS; SURFACE-AREA; HYBRID SUPERCAPACITORS; ELECTRODE MATERIAL; ACTIVATED CARBON; CO3O4; NANOSHEETS; NICO2O4; ZNCO2O4;
D O I
10.1021/acs.energyfuels.0c01427
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
An rGO/NiCo2O4@ZnCo2O4 (RNZC) ternary composite material is synthesized using a simple hydrothermal method. In this report, we demonstrate the effect of rGO concentration on the electrochemical behavior of the rGO/NiCo2O4@ZnCo2O4 composite materials. The specific capacity values of the ternary composite materials increase with rGO concentration up to 50 mg. Furthermore, on increasing the rGO concentration, the capacity value decreases. Among the prepared samples, the composite with SO mg of rGO (RNZC3) exhibits a maximum specific capacity of 1197 C g(-1) at a current density of 1 A g(-1). We also demonstrate the design of a supercapacitor device with high specific energy density using RNZC3. The RNZC3//RNZC3 symmetric supercapacitor device exhibits a maximum energy density of 62 W h kg(-1). In the case of an asymmetric supercapacitor device, the applied potential range is extended beyond the water decomposition range. Enhancement of the potential window ensures to achieve a high energy density. The RNZC3//rGO asymmetric supercapacitor device reaches the highest energy density of 71 W h kg(-1) and the corresponding power density is 0.98 kW kg(-1).
引用
收藏
页码:10131 / 10141
页数:11
相关论文
共 53 条
[1]  
Babu GA., 2014, Int. J. Sci. Eng. Appl., V1, P17, DOI [10.7753/IJSEANCRTAM.1005, DOI 10.7753/IJSEANCRTAM.1005, DOI 10.7753/IJSEANCRTAM01.1005]
[2]  
Basnayaka PA, 2017, SPR SER POLYM COMPOS, P165, DOI 10.1007/978-3-319-46458-9_6
[3]   Carbon-based composite materials for supercapacitor electrodes: a review [J].
Borenstein, Arie ;
Hanna, Ortal ;
Attias, Ran ;
Luski, Shalom ;
Brousse, Thierry ;
Aurbach, Doron .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) :12653-12672
[4]   Raman microscopy study of synthetic cobalt blue spinels used in the field of art [J].
Bouchard, Michel ;
Gambardella, Alessa .
JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (11) :1477-1485
[5]   Reduced ZnCo2O4@NiMoO4.H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors [J].
Chen, Chao ;
Wang, Sha ;
Luo, Xin ;
Gao, Wenjia ;
Huang, Guanjie ;
Zeng, Yan ;
Zhu, Zhihong .
JOURNAL OF POWER SOURCES, 2019, 409 :112-122
[6]   Graphene for energy conversion and storage in fuel cells and supercapacitors [J].
Choi, Hyun-Jung ;
Jung, Sun-Min ;
Seo, Jeong-Min ;
Chang, Dong Wook ;
Dai, Liming ;
Baek, Jong-Beom .
NANO ENERGY, 2012, 1 (04) :534-551
[7]   Simple Synthesis of NiCO2O4 thin films using Spray Pyrolysis for electrochemical supercapacitor application: A Novel approach [J].
Deokate, Ramesh J. ;
Kalubarme, Ramchandra S. ;
Park, Chan-Jin ;
Lokhande, Chandrakant D. .
ELECTROCHIMICA ACTA, 2017, 224 :378-385
[8]  
Dong J. Y., 1995, J PHYS CHEM, V99, P12925
[9]   Graphene for batteries, supercapacitors and beyond [J].
El-Kady, Maher F. ;
Shao, Yuanlong ;
Kaner, Richard B. .
NATURE REVIEWS MATERIALS, 2016, 1 (07)
[10]   Construction of 3D hierarchical porous NiCo2O4/graphene hydrogel/Ni foam electrode for high-performance supercapacitor [J].
Feng, Hanfang ;
Gao, Shuya ;
Shi, Jun ;
Zhang, Li ;
Peng, Zhenmeng ;
Cao, Shaokui .
ELECTROCHIMICA ACTA, 2019, 299 :116-124