Asymptotics and symmetries of least energy nodal solutions of Lane-Emden problems with slow growth

被引:17
作者
Bonheure, Denis [1 ]
Bouchez, Vincent [1 ]
Grumiau, Christopher [2 ]
Van Schaftingen, Jean [1 ]
机构
[1] Catholic Univ Louvain, Inst Math Pure & Appl, B-1348 Louvain, Belgium
[2] Univ Mons Hainaut, Inst Math, B-7000 Mons, Belgium
关键词
variational methods; least energy nodal solution; symmetry and symmetry breaking; Nehari manifold; nodal Nehari set; semilinear elliptic problem; superlinear elliptic boundary value problem;
D O I
10.1142/S0219199708002910
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Lane-Emden problem [GRAPHICS] where is a bounded domain in R-N and p > 2. First, we prove that, for p close to 2, the solution is unique once we. x the projection on the second eigenspace. From this uniqueness property, we deduce partial symmetries of least energy nodal solutions. We also analyze the asymptotic behavior of least energy nodal solutions as p goes to 2. Namely, any accumulation point of sequences of (renormalized) least energy nodal solutions is a second eigenfunction that minimizes a reduced functional on a reduced Nehari manifold. From this asymptotic behavior, we also deduce an example of symmetry breaking. We use numerics to illustrate our results.
引用
收藏
页码:609 / 631
页数:23
相关论文
共 13 条
[1]   Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains [J].
Aftalion, A ;
Pacella, F .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) :339-344
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[4]   A sign-changing solution for a superlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1041-1053
[5]   A MOUNTAIN PASS METHOD FOR THE NUMERICAL-SOLUTION OF SEMILINEAR ELLIPTIC PROBLEMS [J].
CHOI, YS ;
MCKENNA, PJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (04) :417-437
[6]   A numerical investigation of sign-changing solutions to superlinear elliptic equations on symmetric domains [J].
Costa, DG ;
Ding, ZH ;
Neuberger, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) :299-319
[7]  
Ern A., 2004, APPL MATH SCI, V159
[8]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[9]  
GRUMIAU C, 2008, ELECT J DIFFER UNPUB
[10]  
GRUMIAU C, 2007, THESIS U MONS HAINAU