Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor

被引:79
作者
Pramanik, Atin
Maiti, Sandipan
Mahanty, Sourindra [1 ]
机构
[1] CSIR Cent Glass & Ceram Res Inst, Fuel Cell & Battery Div, Kolkata 700032, India
关键词
DOUBLE-LAYER CAPACITORS; ALPHA-COBALT HYDROXIDE; LITHIUM-ION BATTERIES; ROOM-TEMPERATURE; GRAPHITE OXIDE; CARBON NANOFIBER; NANOTUBE ARRAYS; ELECTRODES; FACILE; SHEETS;
D O I
10.1039/c5dt01643f
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Developing new materials for electrochemical supercapacitors with higher energy density has recently gained tremendous impetus in the context of effective utilization of renewable energy. Herein, we report a simple one-pot synthesis of bundled nanorods of Cu(OH)(2) embedded in a matrix of reduced graphene oxide (Cu(OH)(2)@RGO) under mild hydrothermal conditions of 80 degrees C for 1 h. The synthesized material shows a high BET surface area of 78.7 m(2) g(-1) and a mesoporous nature with a broad pore-size distribution consisting of structural pores as well as inter-particle pores. Raman spectroscopy suggests an intimate interaction between Cu(OH)(2) and reduced graphene oxide (RGO) creating more defects by destruction of sp(2) domains which would help the defect-assisted charge transport during electrochemical processes. When investigated as an electrochemical supercapacitor, Cu(OH)(2)@RGO shows a high capacitance of 602 F g(-1) at 0.2 A g(-1) in 1 M KOH in a three-electrode cell configuration. Detailed electrochemical studies indicate that the Faradic processes are diffusion controlled and follow a quasi-reversible kinetics. Further, a two-electrode symmetric cell shows good energy density and power density (84.5 Wh kg(-1) at 0.55 kW kg(-1) and 20.5 Wh kg(-1) at 5.5 kW kg(-1)) characteristics demonstrating superior application potential of this common low-cost transition metal hydroxide for high performance energy storage devices.
引用
收藏
页码:14604 / 14612
页数:9
相关论文
共 67 条
[1]  
Adekunle AS, 2011, INT J ELECTROCHEM SC, V6, P4760
[2]   COORDINATION AND CONFORMATION IN PEO, PEGM AND PEG SYSTEMS CONTAINING LITHIUM OR LANTHANUM TRIFLATE [J].
BERNSON, A ;
LINDGREN, J ;
HUANG, WW ;
FRECH, R .
POLYMER, 1995, 36 (23) :4471-4478
[3]   Nickel- Cobalt Layered Double Hydroxide Nanosheets for High- performance Supercapacitor Electrode Materials [J].
Chen, Hao ;
Hu, Linfeng ;
Chen, Min ;
Yan, Yan ;
Wu, Limin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (07) :934-942
[4]   Vapor-phase crystallization route to oxidized Cu foils in air as anode materials for lithium-ion batteries [J].
Chen, Kunfeng ;
Song, Shuyan ;
Xue, Dongfeng .
CRYSTENGCOMM, 2013, 15 (01) :144-151
[5]   Facile Preparation of Graphene-Copper Nanoparticle Composite by in Situ Chemical Reduction for Electrochemical Sensing of Carbohydrates [J].
Chen, Qiwen ;
Zhang, Luyan ;
Chen, Gang .
ANALYTICAL CHEMISTRY, 2012, 84 (01) :171-178
[6]  
DAI ZR, 2002, NANO LETT, V2, P1397
[7]   Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene [J].
Das, Barun ;
Prasad, K. Eswar ;
Ramamurty, U. ;
Rao, C. N. R. .
NANOTECHNOLOGY, 2009, 20 (12)
[8]   Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors [J].
Dong, Xiangmao ;
Wang, Kun ;
Zhao, Chongjun ;
Qian, Xiuzhen ;
Chen, Shi ;
Li, Zhen ;
Liu, Huakun ;
Dou, Shixue .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 586 :745-753
[9]   Nickel cobaltite as an emerging material for supercapacitors: An overview [J].
Dubal, Deepak P. ;
Gomez-Romero, Pedro ;
Sankapal, Babasaheb R. ;
Holze, Rudolf .
NANO ENERGY, 2015, 11 :377-399
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)