Simulated migration behavior of metastable Σ3 (1185) incoherent twin grain boundaries

被引:14
作者
Homer, Eric R. [1 ]
Verma, Akarsh [1 ]
Britton, Darcey [1 ]
Johnson, Oliver K. [1 ]
Thompson, Gregory B. [2 ]
机构
[1] Brigham Young Univ, Dept Mech Engn, Provo, UT 84602 USA
[2] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35401 USA
来源
42ND RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE: MICROSTRUCTURAL VARIABILITY: PROCESSING, ANALYSIS, MECHANISMS AND PROPERTIES | 2022年 / 1249卷
关键词
MOBILITY; MOTION; COPPER;
D O I
10.1088/1757-899X/1249/1/012019
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Molecular dynamics simulations are used to examine the migration behavior of one incoherent twin, a Sigma 3 (11 85) / (8115) grain boundary. The boundary is known to exhibit non-Arrhenius boundary migration that slows as temperature increases. This behavior is examined in 165 metastable structures of the same boundary and in a large simulation cell where smaller length scales can have less of an effect. The metastable boundaries show diverse migration behaviors from non-Arrhenius to Arrhenius, though the majority of them exhibit non-Arrhenius behavior. The large simulation cell sizes show no dependence on system size, eliminating concerns about the effect of facet nucleation on the migration in periodic simulation cells. However, facet structures play an important role in the migration of the metastable boundaries. Boundaries with larger facets typically migrate faster than those with smaller facets and with defects in the boundary structure.
引用
收藏
页数:12
相关论文
共 34 条
[1]   Generalized interfacial fault energies [J].
Barrett, Christopher D. ;
El Kadiri, Haitham ;
Moser, Robert .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2017, 110 :106-112
[2]   The role of copper twin boundaries in cryogenic indentation-induced grain growth [J].
Brons, J. G. ;
Hardwick, J. A. ;
Padilla, H. A., II ;
Hattar, K. ;
Thompson, G. B. ;
Boyce, B. L. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 592 :182-188
[3]   Grain boundary complexions [J].
Cantwell, Patrick R. ;
Tang, Ming ;
Dillon, Shen J. ;
Luo, Jian ;
Rohrer, Gregory S. ;
Harmer, Martin P. .
ACTA MATERIALIA, 2014, 62 :1-48
[4]   On the temperature dependence of grain boundary mobility [J].
Chen, Kongtao ;
Han, Jian ;
Srolovitz, David J. .
ACTA MATERIALIA, 2020, 194 :412-421
[5]   Understanding the anomalous thermal behavior of Σ3 grain boundaries in a variety of FCC metals [J].
Chesser, Ian ;
Holm, Elizabeth .
SCRIPTA MATERIALIA, 2018, 157 :19-23
[6]   Computation of grain boundary stiffness and mobility from boundary fluctuations [J].
Foiles, Stephen M. ;
Hoyt, J. J. .
ACTA MATERIALIA, 2006, 54 (12) :3351-3357
[7]   Structural phase transformations in metallic grain boundaries [J].
Frolov, Timofey ;
Olmsted, David L. ;
Asta, Mark ;
Mishin, Yuri .
NATURE COMMUNICATIONS, 2013, 4
[8]   Migration mechanisms of a faceted grain boundary [J].
Hadian, R. ;
Grabowski, B. ;
Finnis, M. W. ;
Neugebauer, J. .
PHYSICAL REVIEW MATERIALS, 2018, 2 (04)
[9]   Atomistic migration mechanisms of atomically flat, stepped, and kinked grain boundaries [J].
Hadian, R. ;
Grabowski, B. ;
Race, C. P. ;
Neugebauer, J. .
PHYSICAL REVIEW B, 2016, 94 (16)
[10]   Grain-boundary kinetics: A unified approach [J].
Han, Jian ;
Thomas, Spencer L. ;
Srolovitz, David J. .
PROGRESS IN MATERIALS SCIENCE, 2018, 98 :386-476