THE NUMERICAL RADII OF WEIGHTED SHIFT MATRICES AND OPERATORS

被引:13
作者
Chien, Mao-Ting [1 ]
Sheu, Hue-An [1 ]
机构
[1] Soochow Univ, Dept Math, Taipei 11102, Taiwan
来源
OPERATORS AND MATRICES | 2013年 / 7卷 / 01期
关键词
Numerical range; numerical radius; weighted shift operator; RANGE;
D O I
10.7153/oam-07-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an operator on a separable Hilbert space. The numerical range of A is defined as W(A) = {< Ax,x > : parallel to x parallel to = 1}. It is known that the numerical range of a weighted shift operator is a circular disk. In this paper, we compute and compare the numerical radii of certain weighted shift matrices and operators.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 9 条
[1]   MAPPING THEOREMS FOR NUMERICAL RANGE [J].
BERGER, CA ;
STAMPFLI, JG .
AMERICAN JOURNAL OF MATHEMATICS, 1967, 89 (04) :1047-&
[2]   The q-numerical radius of weighted shift operators with periodic weights [J].
Chien, Mao-Ting ;
Nakazato, Hiroshi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) :198-218
[3]  
Chien MT, 2009, ELECTRON J LINEAR AL, V18, P58
[4]   On the numerical range of tridiagonal operators [J].
Chien, MT .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 246 :203-214
[5]   CIRCULARITY OF THE NUMERICAL RANGE [J].
CHIEN, MT ;
TAM, BS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 201 :113-133
[6]  
Gustafson K. E., 1997, NUMERICAL RANGE FIEL
[7]  
Marcus e M., 1979, Linear Multilin. Algebra, V7, P111, DOI DOI 10.1080/03081087908817266
[8]  
Sheilds A. L., 1974, MATH SURVEYS, V13
[9]  
STOUT QF, 1983, P AM MATH SOC, V88, P495