Computational drug treatment simulations on projections of dysregulated protein networks derived from the myelodysplastic mutanome match clinical response in patients

被引:15
作者
Drusboskya, Leylah [1 ]
Medina, Cindy [1 ]
Martuscello, Regina [1 ,8 ]
Hawkins, Kimberly E. [1 ]
Chang, Myron [2 ]
Lamba, Jatinder K. [3 ]
Vali, Shireen [4 ]
Kumar, Ansu [4 ]
Singh, Neeraj Kumar [4 ]
Abbasi, Taher [4 ]
Sekeres, Mikkael A. [5 ]
Mallo, Mar [6 ]
Sole, Francesc [6 ]
Bejar, Rafael [7 ]
Cogle, Christopher R. [1 ]
机构
[1] Dept Hematol Oncol, 1600 SW Archer Rd,POB 100278, Gainesville, FL 32610 USA
[2] Dept Biostat, 2004 Mowry Rd,POB 117450, Gainesville, FL 32611 USA
[3] Dept Pharmacotherapy & Translat Res, 1225 Ctr Dr,POB 100486, Gainesville, FL 32610 USA
[4] Cellworks Grp Inc, 2033 Gateway Pl,Suite 500, San Jose, CA 95110 USA
[5] Cleveland Clin, Leukemia Program, 9500 Euclid Ave,Mail Code R35, Cleveland, OH 44195 USA
[6] Univ Autonoma Barcelona, ICO Hosp Germans Trias & Pujol, Inst Recerca Leucemia Josep Carreras, MDS Res Grp, Barcelona 08916, Spain
[7] Univ Calif San Diego, Moores Canc Ctr, Div Hematol & Oncol, 3855 Hlth Sci Dr, La Jolla, CA 92093 USA
[8] Columbia Univ, 1130 St Nicholas Ave,10-01B, New York, NY 10032 USA
关键词
Myelodysplastic syndromes; Computational biology; Mutanome; Response prediction; Hma; Lenalidomide; MUTATIONS; RISK; LENALIDOMIDE; CANCER; ACTIVATION; FAILURE;
D O I
10.1016/j.leukres.2016.11.004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Although the majority of MDS patients fail to achieve clinical improvement to approved therapies, some patients benefit from treatment. Predicting patient response prior to therapy would improve treatment effectiveness, avoid treatment-related adverse events and reduce healthcare costs. Three separate cohorts of MDS patients were used to simulate drug response to lenalidomide alone, hypomethylating agent (HMA) alone, or HMA plus lenalidomide. Utilizing a computational biology program, genomic abnormalities in each patient were used to create an intracellular pathway map that was then used to screen for drug response. In the lenalidomide treated cohort, computer modeling correctly matched clinical responses in 37/46 patients (80%). In the second cohort, 15 HMA patients were modeled and correctly matched to responses in 12 (80%). In the third cohort, computer modeling correctly matched responses in 10/10 patients (100%). This computational biology network approach identified GGH overexpression as a potential resistance factor to HMA treatment and paradoxical activation of beta-catenin (through Csnk1a1 inhibition) as a resistance factor to lenalidomide treatment. We demonstrate that a computational technology is able to map the complexity of the MDS mutanome to simulate and predict drug response. This tool can improve understanding of MDS biology and mechanisms of drug sensitivity and resistance. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 25 条
[11]  
Kavianpour M., 2016, TUMOUR BIOL
[12]  
Komrokji R.S., 2015, ANN ONCOL
[13]   Response to lenalidomide in myelodysplastic syndromes with del(5q): influence of cytogenetics and mutations [J].
Mallo, Mar ;
del Rey, Monica ;
Ibanez, Mariam ;
Jose Calasanz, Ma ;
Arenillas, Leonor ;
Jose Larrayoz, Ma ;
Pedro, Carmen ;
Jerez, Andres ;
Maciejewski, Jaroslaw ;
Costa, Dolors ;
Nomdedeu, Meritxell ;
Diez-Campelo, Maria ;
Lumbreras, Eva ;
Gonzalez-Martinez, Teresa ;
Marugan, Isabel ;
Such, Esperanza ;
Cervera, Jose ;
Cigudosa, Juan C. ;
Alvarez, Sara ;
Florensa, Lourdes ;
Hernandez, Jesus Ma ;
Sole, Francesc .
BRITISH JOURNAL OF HAEMATOLOGY, 2013, 162 (01) :74-86
[14]  
Nishiwakia Satoshi, 2015, LEUKEMIA RES, P1
[15]   A systematic modeling study on the pathogenic role of p38 MAPK activation in myelodysplastic syndromes [J].
Peng, Huiming ;
Wen, Jianguo ;
Zhang, Lixin ;
Li, Hongwei ;
Chang, Chung-Che ;
Zu, Youli ;
Zhou, Xiaobo .
MOLECULAR BIOSYSTEMS, 2012, 8 (04) :1366-1374
[16]   In silico modeling predicts drug sensitivity of patient-derived cancer cells [J].
Pingle, Sandeep C. ;
Sultana, Zeba ;
Pastorino, Sandra ;
Jiang, Pengfei ;
Mukthavaram, Rajesh ;
Chao, Ying ;
Bharati, Ila Sri ;
Nomura, Natsuko ;
Makale, Milan ;
Abbasi, Taher ;
Kapoor, Shweta ;
Kumar, Ansu ;
Usmani, Shahabuddin ;
Agrawal, Ashish ;
Vali, Shireen ;
Kesari, Santosh .
JOURNAL OF TRANSLATIONAL MEDICINE, 2014, 12
[17]   Outcome of High-Risk Myelodysplastic Syndrome After Azacitidine Treatment Failure [J].
Prebet, Thomas ;
Gore, Steven D. ;
Esterni, Benjamin ;
Gardin, Claude ;
Itzykson, Raphael ;
Thepot, Sylvain ;
Dreyfus, Francois ;
Rauzy, Odile Beyne ;
Recher, Christian ;
Ades, Lionel ;
Quesnel, Bruno ;
Beach, C. L. ;
Fenaux, Pierre ;
Vey, Norbert .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (24) :3322-3327
[18]  
Raj Kavita, 2006, Ther Clin Risk Manag, V2, P377, DOI 10.2147/tcrm.2006.2.4.377
[19]   The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes [J].
Raza, Azra ;
Galili, Naomi .
NATURE REVIEWS CANCER, 2012, 12 (12) :849-859
[20]   Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes [J].
Sekeres, Mikkael A. ;
Tiu, Ramon V. ;
Komrokji, Rami ;
Lancet, Jeffrey ;
Advani, Anjali S. ;
Afable, Manuel ;
Englehaupt, Ricki ;
Juersivich, Joyce ;
Cuthbertson, David ;
Paleveda, Jennifer ;
Tabarroki, Ali ;
Visconte, Valeria ;
Makishima, Hideki ;
Jerez, Andres ;
Paquette, Ronald ;
List, Alan F. ;
Maciejewski, Jaroslaw P. .
BLOOD, 2012, 120 (25) :4945-4951