Thermodynamic modeling of chromium: strong and weak magnetic coupling

被引:24
作者
Koermann, F. [1 ]
Grabowski, B. [1 ]
Soederlind, P. [2 ]
Palumbo, M. [3 ]
Fries, S. G. [3 ]
Hickel, T. [1 ]
Neugebauer, J. [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Ruhr Univ Bochum, ICAMS, D-44780 Bochum, Germany
基金
欧洲研究理事会;
关键词
SPIN-DENSITY-WAVE; THERMAL-EXPANSION; HEAT-CAPACITIES; ALLOYS; CR; ANTIFERROMAGNETISM; EXCITATIONS; FLUCTUATIONS; STATE;
D O I
10.1088/0953-8984/25/42/425401
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
As chromium is a decisive ingredient for stainless steels, a reliable understanding of its thermodynamic properties is indispensable. Parameter-free first-principles methods have nowadays evolved to a state allowing such thermodynamic predictions. For materials such as Cr, however, the inclusion of magnetic entropy and higher order contributions such as anharmonic entropy is still a formidable task. Employing state-of-the-art ab initio molecular dynamics simulations and statistical concepts, we compute a set of thermodynamic properties based on quasiharmonic, anharmonic, electronic and magnetic free energy contributions from first principles. The magnetic contribution is modeled by an effective nearest-neighbor Heisenberg model, which itself is solved numerically exactly by means of a quantum Monte Carlo method. We investigate two different scenarios: a weak magnetic coupling scenario for Cr, as usually presumed in empirical thermodynamic models, turns out to be in clear disagreement with experimental observations. We show that instead a mixed Hamiltonian including weak and strong magnetic coupling provides a consistent picture with good agreement to experimental thermodynamic data.
引用
收藏
页数:7
相关论文
共 63 条
[1]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[2]   The heat capacities of chromium, chromic oxide, chromous chloride and chromic chloride at low temperatures [J].
Anderson, CT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1937, 59 :488-491
[3]   THERMODYNAMIC PROPERTIES OF CHROMIUM [J].
ANDERSSON, JO .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1985, 6 (04) :411-419
[4]   HIGH TEMPERATURE CALORIMETRY .2. ATOMIC HEATS OF CHROMIUM, MANGANESE, AND COBALT BETWEEN 0-DEGREES AND 800-DEGREES-C [J].
ARMSTRONG, LD ;
GRAYSONSMITH, H .
CANADIAN JOURNAL OF RESEARCH SECTION A-PHYSICAL SCIENCES, 1950, 28 (01) :51-59
[5]   OPTICAL STUDIES OF ANTIFERROMAGNETISM IN CHROMIUM AND ITS ALLOYS [J].
BARKER, AS ;
DITZENBERGER, JA .
PHYSICAL REVIEW B-SOLID STATE, 1970, 1 (11) :4378-+
[6]   AN ANOMALY IN THE HEAT CAPACITY OF CHROMIUM AT 38.5-DEGREES-C [J].
BEAUMONT, RH ;
CHIHARA, H ;
MORRISON, JA .
PHILOSOPHICAL MAGAZINE, 1960, 5 (50) :188-191
[7]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[8]  
CLUSIUS K, 1962, Z NATURFORSCH PT A, VA 17, P522
[9]   What density-functional theory can tell us about the spin-density wave in Cr [J].
Cottenier, S ;
De Vries, B ;
Meersschaut, J ;
Rots, M .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (12) :3275-3283
[10]   Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic, and electronic excitations [J].
Dick, A. ;
Koermann, F. ;
Hickel, T. ;
Neugebauer, J. .
PHYSICAL REVIEW B, 2011, 84 (12)