Hamiltonian stationary Lagrangian surfaces in C2

被引:53
作者
Hélein, F
Romon, P
机构
[1] ENS Cachan, CMLA, F-94235 Cachan, France
[2] Univ Marne la Vallee, F-77454 Noisy Le Grand 2, Marne La Vallee, France
关键词
D O I
10.4310/CAG.2002.v10.n1.a5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hamiltonian stationary Lagrangian surfaces in C-2, i.e., Lagrangian surfaces in C-2 which are stationary points of the area functional under smooth Hamiltonian variations. Using loop groups, we propose a formulation of the equation as a completely integrable system. We construct a Weierstrass type representation and produce all tori through either the integrable systems machinery or more direct arguments.
引用
收藏
页码:79 / 126
页数:48
相关论文
共 27 条
[1]  
ACHARYA BS, 1998, ARXIVHEPTH9803260
[2]  
[Anonymous], OXFORD MATH MONOGRAP
[3]   HARMONIC TORI IN SYMMETRICAL SPACES AND COMMUTING HAMILTONIAN-SYSTEMS ON LOOP ALGEBRAS [J].
BURSTALL, FE ;
FERUS, D ;
PEDIT, F ;
PINKALL, U .
ANNALS OF MATHEMATICS, 1993, 138 (01) :173-212
[4]   Examples of unstable Hamiltonian-minimal Lagrangian tori in C2 [J].
Castro, I ;
Urbano, F .
COMPOSITIO MATHEMATICA, 1998, 111 (01) :1-14
[5]   DEFORMATIONS OF ISOTROPIC SUBMANIFOLDS IN KAHLER-MANIFOLDS [J].
CHEN, BY ;
MORVAN, JM .
JOURNAL OF GEOMETRY AND PHYSICS, 1994, 13 (01) :79-104
[6]   Meromorphic potentials and smooth surfaces of constant mean curvature [J].
Dorfmeister, J ;
Haak, G .
MATHEMATISCHE ZEITSCHRIFT, 1997, 224 (04) :603-640
[7]   Weierstrass type representation of harmonic maps into symmetric spaces [J].
Dorfmeister, J ;
Pedit, F ;
Wu, H .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1998, 6 (04) :633-668
[8]  
Faddeev L. D., 1987, HAMILTONIAN METHODS
[9]  
FERUS D, 1992, J REINE ANGEW MATH, V429, P1
[10]   S-1-EQUIVARIANT MINIMAL TORI IN S-4 AND S-1-EQUIVARIANT WILLMORE TORI IN S-3 [J].
FERUS, D ;
PEDIT, F .
MATHEMATISCHE ZEITSCHRIFT, 1990, 204 (02) :269-282