Computational approaches to fMRI analysis

被引:143
作者
Cohen, Jonathan D. [1 ,2 ]
Daw, Nathaniel [1 ,2 ]
Engelhardt, Barbara [3 ]
Hasson, Uri [1 ,2 ]
Li, Kai [3 ]
Niv, Yael [1 ,2 ]
Norman, Kenneth A. [1 ,2 ]
Pillow, Jonathan [1 ,2 ]
Ramadge, Peter J. [4 ]
Turk-Browne, Nicholas B. [1 ,2 ]
Willke, Theodore L. [5 ]
机构
[1] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Psychol, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[5] Intel Corp, Intel Labs, Santa Clara, CA USA
关键词
MULTIVARIATE PATTERN-ANALYSIS; RESONANCE-IMAGING FMRI; DEEP NEURAL-NETWORKS; HUMAN BRAIN ACTIVITY; COMPETING MEMORIES; NEUROFEEDBACK; ATTENTION; MODEL; HIPPOCAMPAL; ACTIVATION;
D O I
10.1038/nn.4499
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Analysis methods in cognitive neuroscience have not always matched the richness of fMRI data. Early methods focused on estimating neural activity within individual voxels or regions, averaged over trials or blocks and modeled separately in each participant. This approach mostly neglected the distributed nature of neural representations over voxels, the continuous dynamics of neural activity during tasks, the statistical benefits of performing joint inference Over multiple participants and the value of using predictive models to constrain analysis. Several recent exploratory and theory-driven methods have begun to pursue these opportunities. These methods highlight the importance of computational techniques in fMRI analysis, especially machine learning, algorithmic optimization and parallel computing. Adoption of these techniques is enabling a new generation of experiments and analyses that could transform our understanding of some of the most complex and distinctly human signals in the brain: acts of cognition such as thoughts, intentions and memories.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 101 条
[21]  
Dale AM, 1997, HUM BRAIN MAPP, V5, P329, DOI 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO
[22]  
2-5
[23]   What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis [J].
Davis, Tyler ;
LaRocque, Karen F. ;
Mumford, Jeanette A. ;
Norman, Kenneth A. ;
Wagner, Anthony D. ;
Poldrack, Russell A. .
NEUROIMAGE, 2014, 97 :271-283
[24]   Model-Based Influences on Humans' Choices and Striatal Prediction Errors [J].
Daw, Nathaniel D. ;
Gershman, Samuel J. ;
Seymour, Ben ;
Dayan, Peter ;
Dolan, Raymond J. .
NEURON, 2011, 69 (06) :1204-1215
[25]   The computational neurobiology of learning and reward [J].
Daw, ND ;
Doya, K .
CURRENT OPINION IN NEUROBIOLOGY, 2006, 16 (02) :199-204
[26]  
Dean J., 2012, ADV NEURAL INFORM PR, V25, P1223, DOI DOI 10.5555/2999134.2999271
[27]   Closed-loop training of attention with real-time brain imaging [J].
Debettencourt, Megan T. ;
Cohen, Jonathan D. ;
Lee, Ray F. ;
Norman, Kenneth A. ;
Turk-Browne, Nicholas B. .
NATURE NEUROSCIENCE, 2015, 18 (03) :470-165
[28]   Control over brain activation and pain learned by using real-time functional MRI [J].
deCharms, RC ;
Maeda, F ;
Glover, GH ;
Ludlow, D ;
Pauly, JM ;
Soneji, D ;
Gabrieli, JDE ;
Mackey, SC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (51) :18626-18631
[29]   Memory Consolidation by Replay of Stimulus-Specific Neural Activity [J].
Deuker, Lorena ;
Olligs, Jan ;
Fell, Juergen ;
Kranz, Thorsten A. ;
Mormann, Florian ;
Montag, Christian ;
Reuter, Martin ;
Elger, Christian E. ;
Axmacher, Nikolai .
JOURNAL OF NEUROSCIENCE, 2013, 33 (49) :19373-19383
[30]   Model-based choices involve prospective neural activity [J].
Doll, Bradley B. ;
Duncan, Katherine D. ;
Simon, Dylan A. ;
Shohamy, Daphna ;
Daw, Nathaniel D. .
NATURE NEUROSCIENCE, 2015, 18 (05) :767-+