BBM equation with non-constant coefficients

被引:3
|
作者
Senthilkumar, Amutha [1 ]
机构
[1] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
Solitary waves; BBM equation; uneven bottom; WAVES;
D O I
10.3906/mat-1203-35
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, a model for the propagation of long waves over an uneven bottom is considered. We provide both theoretical and numerical results for this model. We also discuss the changes which occur in a solitary wave solution of the BBM equation as it travels through a channel of decreasing depth.
引用
收藏
页码:652 / 664
页数:13
相关论文
共 50 条
  • [41] ON LOCALLY NON-CONSTANT MAPPINGS
    OMILJANOWSKI, K
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4A (01): : 119 - 122
  • [42] Kernel of A Diffusion Equation With Non-Constant Space-Time Diffusion Coefficient
    Omaba, McSylvester Ejighikeme
    Nwaeze, Eze Raymond
    APPLIED MATHEMATICS E-NOTES, 2020, 20 : 133 - 141
  • [43] Non-blow-up phenomenon for the Cahn-Hilliard equation with non-constant mobility
    Huang, Rui
    Yin, Jingxue
    Wang, Liangwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (01) : 58 - 64
  • [44] The practical treatment of boundary value problems of ordinary differential equations with non-constant coefficients
    Iglisch, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1934, 14 : 51 - 58
  • [45] Stability of the stationary solutions of the Allen-Cahn equation with non-constant stiffness
    Butta, Paolo
    Cirillo, Emilio N. M.
    Sciarra, Giulio
    WAVE MOTION, 2020, 98
  • [46] Exact Solutions for the Generalized BBM Equation with Variable Coefficients
    Gomez, Cesar A.
    Salas, Alvaro H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [47] Breathers and interaction phenomena on the non-constant backgrounds for a (3+1)-dimensional generalized shallow water wave equation with variable coefficients
    Lv, Na
    An, Wen
    Zhang, Runfa
    Yuan, Xuegang
    Yue, Yichao
    PHYSICS LETTERS A, 2024, 527
  • [48] Non-constant discounting in continuous time
    Karp, Larry
    JOURNAL OF ECONOMIC THEORY, 2007, 132 (01) : 557 - 568
  • [49] HARMONIC HOLES FOR NON-CONSTANT FIELDS
    DURELLI, AJ
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1980, 47 (02): : 455 - 457
  • [50] EXTENDING ZECKENDORF'S THEOREM TO A NON-CONSTANT RECURRENCE AND THE ZECKENDORF GAME ON THIS NON-CONSTANT RECURRENCE RELATION
    Boldyriew, Elzbieta
    Cusenza, Anna
    Dai, Linglong
    Ding, Pei
    Dunkelberg, Aidan
    Haviland, John
    Huffman, Kate
    Ke, Dianhui
    Kleber, Daniel
    Kuretski, Jason
    Lentfer, John
    Luo, Tianhao
    Miller, Steven J.
    Mizgerd, Clayton
    Tiwari, Vashisth
    Ye, Jingkai
    Zhang, Yunhao
    Zheng, Xiaoyan
    Zhu, Weiduo
    FIBONACCI QUARTERLY, 2020, 58 (05): : 55 - 76