DEFORMATION OF K-THEORETIC CYCLES

被引:0
|
作者
Yang, Sen [1 ,2 ,3 ]
机构
[1] Southeast Univ, Shing Tung Yau Ctr, Nanjing, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing, Peoples R China
[3] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
关键词
K-theory; algebraic cycles; deformation; tangent spaces; obstructions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For X a d-dimensional smooth projective variety over a field k of characteristic 0, using higher algebraic K-theory, we study the following two questions asked by Mark Green and Phillip Griffiths in chapter 10 of [9] (page 186-190): (1) For each positive integer p satisfying 1 <= p <= d, can one define the tangent space TZ(p)(X) to the cycle group Z(p)(X)? (2) Obstruction issues. The highlight is the appearance of negative K-groups which detect the obstructions to deforming cycles.
引用
收藏
页码:303 / 330
页数:28
相关论文
共 50 条
  • [1] Determinant functors, negative K-groups and K-theoretic cycles
    Yang, Sen
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 201
  • [2] K-theoretic Background
    Sujatha, R.
    Bloch-Kato Conjecture for the Riemann Zeta Function, 2015, 418 : 22 - 44
  • [3] K-theoretic Catalan functions
    Blasiak, Jonah
    Morse, Jennifer
    Seelinger, George H.
    ADVANCES IN MATHEMATICS, 2022, 404
  • [4] K-theoretic Catalan functions
    Blasiak, Jonah
    Morse, Jennifer
    Seelinger, George H.
    ADVANCES IN MATHEMATICS, 2022, 404
  • [5] A K-THEORETIC APPROACH TO MULTIPLICITIES
    LEVINE, M
    MATHEMATISCHE ANNALEN, 1985, 271 (03) : 451 - 458
  • [6] A K-theoretic note on geometric quantization
    Metzler, DS
    MANUSCRIPTA MATHEMATICA, 1999, 100 (03) : 277 - 289
  • [7] Combinatorial expansions in K-theoretic bases
    Bandlow, Jason
    Morse, Jennifer
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [8] On the K-Theoretic Hall Algebra of a Surface
    Zhao, Yu
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (06) : 4445 - 4486
  • [9] K-theoretic invariants for Floer homology
    Sullivan, MG
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (04) : 810 - 872
  • [10] K-theoretic invariants of Hamiltonian fibrations
    Savelyev, Yasha
    Shelukhin, Egor
    JOURNAL OF SYMPLECTIC GEOMETRY, 2020, 18 (01) : 251 - 289