Persisting topological order via geometric frustration

被引:19
作者
Schmidt, Kai Phillip [1 ]
机构
[1] TU Dortmund, Lehrstuhl Theoret Phys 1, D-44221 Dortmund, Germany
关键词
TEMPERATURE SERIES EXPANSIONS; ISING-MODELS; QUANTUM COMPUTATION; SYSTEMS;
D O I
10.1103/PhysRevB.88.035118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a toric code model on the dice lattice which is exactly solvable and displays topological order at zero temperature. In the presence of a magnetic field, the flux dynamics is mapped to the highly frustrated transverse field Ising model on the kagome lattice. This correspondence suggests an intriguing disorder by disorder phenomenon in a topologically ordered system implying that the topological order is extremely robust due to the geometric frustration. Furthermore, a connection between fully frustrated transverse field Ising models and topologically ordered systems is demonstrated which opens an exciting physical playground due to the interplay of topological quantum order and geometric frustration.
引用
收藏
页数:4
相关论文
共 29 条
[1]   RESONATING VALENCE BONDS - NEW KIND OF INSULATOR [J].
ANDERSON, PW .
MATERIALS RESEARCH BULLETIN, 1973, 8 (02) :153-160
[2]   FULLY AND PARTIALLY FRUSTRATED SIMPLE-CUBIC ISING-MODELS - LANDAU-GINZBURG-WILSON THEORY [J].
BLANKSCHTEIN, D ;
MA, M ;
BERKER, AN .
PHYSICAL REVIEW B, 1984, 30 (03) :1362-1365
[3]   Cluster Monte Carlo simulation of the transverse Ising model -: art. no. 066110 [J].
Blöte, HWJ ;
Deng, YJ .
PHYSICAL REVIEW E, 2002, 66 (06) :8
[4]   ISING UNIVERSALITY IN 3 DIMENSIONS - A MONTE-CARLO STUDY [J].
BLOTE, HWJ ;
LUIJTEN, E ;
HERINGA, JR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22) :6289-6313
[5]   Robustness of a Perturbed Topological Phase [J].
Dusuel, Sebastien ;
Kamfor, Michael ;
Orus, Roman ;
Schmidt, Kai Phillip ;
Vidal, Julien .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)
[6]   GROUND-STATE PROPERTIES OF ANISOTROPIC TRIANGULAR ANTIFERROMAGNET [J].
FAZEKAS, P ;
ANDERSON, PW .
PHILOSOPHICAL MAGAZINE, 1974, 30 (02) :423-440
[7]   PHASE-DIAGRAMS OF LATTICE GAUGE-THEORIES WITH HIGGS FIELDS [J].
FRADKIN, E ;
SHENKER, SH .
PHYSICAL REVIEW D, 1979, 19 (12) :3682-3697
[8]   ORDER AND DISORDER IN GAUGE SYSTEMS AND MAGNETS [J].
FRADKIN, E ;
SUSSKIND, L .
PHYSICAL REVIEW D, 1978, 17 (10) :2637-2658
[9]   Adiabatic preparation of topological order [J].
Hamma, Alioscia ;
Lidar, Daniel A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[10]   HIGH-TEMPERATURE SERIES EXPANSIONS FOR THE (2 + 1)-DIMENSIONAL ISING-MODEL [J].
HE, HX ;
HAMER, CJ ;
OITMAA, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (10) :1775-1787