A Photovoltaic-Based DC Microgrid System: Analysis, Design and Experimental Results

被引:16
作者
Xiong, Xiaoling [1 ]
Yang, Yuchen [1 ]
机构
[1] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
DC microgrid; PV system; battery; multiple operating modes; energy management strategy; nonlinear analysis; closed-loop stability; DECENTRALIZED CONTROL; BIFURCATION; MANAGEMENT; BUCK;
D O I
10.3390/electronics9060941
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the exhaustion of fossil energy, the utilization of renewable energy resources is developing quickly. Due to the intermittent nature of the renewable energy resources, the energy storage devices are usually adopted in renewable power generation system to enhance the system reliability. In this paper, the photovoltaic-based DC microgrid (PVDCM) system is designed, which is composed of a solar power system and a battery connected to the common bus via a boost converter and a bidirectional buck/boost converter, respectively. As the photovoltaic (PV) panels might operate in a maximum power point tracking (MPPT) mode or constant voltage mode, meanwhile, the power can flow between the battery and the load bidirectionally. Therefore, for the sake of optimizing power utilization in the PVDCM system, a control strategy making the system able to switch from one operating mode to another smoothly and automatically is proposed in this paper. Moreover, the small-signal modeling method based on averaged state-space is no more applicable in this study, thus the nonlinear analysis method with discrete-time mapping model is adopted for stability analysis. Based on the stability analysis, the closed-loop parameters are designed to make sure the whole system can operate properly in all operating modes. The control strategy and stability analysis based on the nonlinear analysis method in the closed-loop design are verified by experiment results.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 40 条
[1]   Eco-design optimisation of an autonomous hybrid wind-photovoltaic system with battery storage [J].
Abbes, D. ;
Martinez, A. ;
Champenois, G. .
IET RENEWABLE POWER GENERATION, 2012, 6 (05) :358-371
[2]  
[Anonymous], 1990, Analysis and control of linear periodically time varying systems
[3]  
Anounce K, 2016, P IRSEC MARR MOR 14
[4]  
Das S., 2018, P ICEES CHENN IND 7
[5]   DC Microgrids-Part I: A Review of Control Strategies and Stabilization Techniques [J].
Dragicevic, Tomislav ;
Lu, Xiaonan ;
Vasquez, Juan C. ;
Guerrero, Josep M. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (07) :4876-4891
[6]   Frequency-Coordinating Virtual Impedance for Autonomous Power Management of DC Microgrid [J].
Gu, Yunjie ;
Li, Wuhua ;
He, Xiangning .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (04) :2328-2337
[7]   Mode-Adaptive Decentralized Control for Renewable DC Microgrid With Enhanced Reliability and Flexibility [J].
Gu, Yunjie ;
Xiang, Xin ;
Li, Wuhua ;
He, Xiangning .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (09) :5072-5080
[8]  
[郭力 Guo Li], 2016, [中国电机工程学报, Proceedings of the Chinese Society of Electrical Engineering], V36, P927
[9]  
Jia Y.H, 2018, P IECON WASH DC US 2
[10]   A Decentralized Control Method for a Low-Voltage DC Microgrid [J].
Khorsandi, Amir ;
Ashourloo, Mojtaba ;
Mokhtari, Hossein .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2014, 29 (04) :793-801