Influence of Sensor Position and Body Movements on Radar-Based Heart Rate Monitoring

被引:4
作者
Herzer, Liv [1 ]
Muecke, Annika [1 ]
Richer, Robert [1 ]
Albrecht, Nils C. [2 ]
Heyder, Markus [2 ]
Jaeger, Katharina M. [1 ]
Koenig, Veronika [1 ,3 ]
Koelpin, Alexander [2 ]
Rohleder, Nicolas [3 ]
Eskofier, Bjoern M. [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Artificial Intelligence Biomed Engn AIBE, Machine Learning & Data Analyt Lab MaD Lab, Erlangen, Germany
[2] Hamburg Univ Technol, Inst High Frequency Technol, Hamburg, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg FAU, Chair Hlth Psychol, Erlangen, Germany
来源
2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22) | 2022年
关键词
Heart rate monitoring; Medical radar; Remote sensing; Vital parameter measurement;
D O I
10.1109/BHI56158.2022.9926775
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cardiac parameters are important indicators for health assessment. Radar-based monitoring with microwave interferometric sensors (MIS) is a promising alternative to conventional measurement methods, as it enables completely contactless cardiac function diagnostics. In this study, we evaluated the effects of sensor positioning and movement on the accuracy of radar-based heart rate measurements with MIS. For this purpose, we recruited 29 participants which performed semi-standardized movements, a reading task, and a standardized laboratory stress test in a seated position. Furthermore, we compared three different sensor positions (dorsal, upper pectoral, and lower pectoral) to a gold standard 1-channel wearable ECG sensor node. The dorsal positioning achieved the best results with a mean error (ME) of 0.2 +/- 5.4 bpm and a mean absolute error (MAE) of 3.5 +/- 4.1 bpm for no movement and also turned out to be most robust against motion artifacts with an overall ME of 0.1 +/- 14.1 bpm (MAE: 9.5 +/- 10.4 bpm). No correlation was found between movement intensity and measurement error. Instead, movement type and direction were identified as primary impact factors. This study provides a valuable contribution towards the applicability of radar-based vital sign monitoring with MIS in real-world scenarios. However, further research is needed to sufficiently prevent and compensate for movement artifacts.
引用
收藏
页数:4
相关论文
共 21 条
[1]   Smart Homes that Monitor Breathing and Heart Rate [J].
Adib, Fadel ;
Mao, Hongzi ;
Kabelac, Zachary ;
Katabi, Dina ;
Miller, Robert C. .
CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2015, :837-846
[2]   Evaluation of Orthostatic Reactions in Real-World Environments Using Wearable Sensors [J].
Happold, Johanna ;
Richer, Robert ;
Kuderle, Arne ;
Gabner, Heiko ;
Klucken, Jochen ;
Eskofier, Bjoern M. ;
Kluge, Felix .
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, :6987-6990
[3]   A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring [J].
Li, Changzhi ;
Lubecke, Victor M. ;
Boric-Lubecke, Olga ;
Lin, Jenshan .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (05) :2046-2060
[4]   Association Between Heart Rate Variability and Parkinson's Disease: A Meta-analysis [J].
Li, Yuan ;
Wang, Junjie ;
Li, Xinyi ;
Jing, Wei ;
Omorodion, Itohan ;
Liu, Lei .
CURRENT PHARMACEUTICAL DESIGN, 2021, 27 (17) :2056-2067
[5]   A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs [J].
Lotufo, Paulo A. ;
Valiengo, Leandro ;
Bensenor, Isabela M. ;
Brunoni, Andre R. .
EPILEPSIA, 2012, 53 (02) :272-282
[6]   NeuroKit2: A Python']Python toolbox for neurophysiological signal processing [J].
Makowski, Dominique ;
Pham, Tam ;
Lau, Zen J. ;
Brammer, Jan C. ;
Lespinasse, Francois ;
Pham, Hung ;
Schoelzel, Christopher ;
Chen, S. H. Annabel .
BEHAVIOR RESEARCH METHODS, 2021, 53 (04) :1689-1696
[7]   A Clinically Evaluated Interferometric Continuous-Wave Radar System for the Contactless Measurement of Human Vital Parameters [J].
Michler, Fabian ;
Shi, Kilin ;
Schellenberger, Sven ;
Steigleder, Tobias ;
Malessa, Anke ;
Hameyer, Laura ;
Neumann, Nina ;
Lurz, Fabian ;
Ostgathe, Christoph ;
Weigel, Robert ;
Koelpin, Alexander .
SENSORS, 2019, 19 (11)
[8]   Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013 [J].
Naghavi, Mohsen ;
Wang, Haidong ;
Lozano, Rafael ;
Davis, Adrian ;
Liang, Xiaofeng ;
Zhou, Maigeng ;
Vollset, Stein Emil ;
Ozgoren, Ayse Abbasoglu ;
Abdalla, Safa ;
Abd-Allah, Foad ;
Aziz, Muna I. Abdel ;
Abera, Semaw Ferede ;
Aboyans, Victor ;
Abraham, Biju ;
Abraham, Jerry P. ;
Abuabara, Katrina E. ;
Abubakar, Ibrahim ;
Abu-Raddad, Laith J. ;
Abu-Rmeileh, Niveen M. E. ;
Achoki, Tom ;
Adelekan, Ademola ;
Ademi, Zanfina ;
Adofo, Koranteng ;
Adou, Arsene Kouablan ;
Adsuar, Jose C. ;
Arnlov, Johan ;
Agardh, Emilie Elisabet ;
Akena, Dickens ;
Al Khabouri, Mazin J. ;
Alasfoor, Deena ;
Albittar, Mohammed ;
Alegretti, Miguel Angel ;
Aleman, Alicia V. ;
Alemu, Zewdie Aderaw ;
Alfonso-Cristancho, Rafael ;
Alhabib, Samia ;
Ali, Mohammed K. ;
Ali, Raghib ;
Alla, Francois ;
Al Lami, Faris ;
Allebeck, Peter ;
AlMazroa, Mohammad A. ;
Salman, Rustam Al-Shahi ;
Alsharif, Ubai ;
Alvarez, Elena ;
Alviz-Guzman, Nelson ;
Amankwaa, Adansi A. ;
Amare, Azmeraw T. ;
Ameli, Omid ;
Amini, Hassan .
LANCET, 2015, 385 (9963) :117-171
[9]   Noncontact RF Vital Sign Sensor for Continuous Monitoring of Driver Status [J].
Park, Jin-Kwan ;
Hong, Yunseog ;
Lee, Hyunjae ;
Jang, Chorom ;
Yun, Gi-Ho ;
Lee, Hee-Jo ;
Yook, Jong-Gwan .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (03) :493-502
[10]  
Richer R., 2021, J Open Source Softw, V6, P3702, DOI [10.21105/joss.03702, DOI 10.21105/JOSS.03702]