Machine Learning-Based Classification of Subjective Cognitive Decline, Mild Cognitive Impairment, and Alzheimer's Dementia Using Neuroimage and Plasma Biomarkers

被引:10
作者
Chiu, Shu-, I [1 ]
Fan, Ling-Yun [2 ,3 ]
Lin, Chin-Hsien [4 ]
Chen, Ta-Fu [4 ]
Lim, Wee Shin [5 ]
Jang, Jyh-Shing Roger [5 ]
Chiu, Ming-Jang [4 ,5 ,6 ]
机构
[1] Natl Chengchi Univ, Dept Comp Sci, Taipei 116302, Taiwan
[2] Univ Queensland, Queensland Brain Inst, St Lucia, Qld 4067, Australia
[3] Natl Taiwan Univ Hosp, Dept Neurol, Hu Bei Branch, Taipei 108206, Taiwan
[4] Natl Taiwan Univ, Natl Taiwan Univ Hosp, Coll Med, Dept Neurol, Taipei 100225, Taiwan
[5] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Grad Inst Psychol, Taipei 106319, Taiwan
[6] Natl Taiwan Univ, Grad Inst Brain & Mind Sci, Taipei 100233, Taiwan
来源
ACS CHEMICAL NEUROSCIENCE | 2022年 / 13卷 / 23期
关键词
Alzheimer?s disease spectrum; mild cognitive impairment; subjective cognitive decline; machine learning; neuroimage; plasma biomarker; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; AD DEMENTIA; RECOMMENDATIONS; DISEASE; TAU;
D O I
10.1021/acschemneuro.2c00255
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alzheimer's disease (AD) progresses relentlessly from the preclinical to the dementia stage. The process begins decades before the diagnosis of dementia. Therefore, it is crucial to detect early manifestations to prevent cognitive decline. Recent advances in artificial intelligence help tackle the complex high-dimensional data encountered in clinical decision-making. In total, we recruited 206 subjects, including 69 cognitively unimpaired, 40 subjective cognitive decline (SCD), 34 mild cognitive impairment (MCI), and 63 AD dementia (ADD). We included 3 demographic, 1 clinical, 18 brain-image, and 3 plasma biomarker (Ass1-42, Ass1-40, and tau protein) features. We employed the linear discriminant analysis method for feature extraction to make data more distinguishable after dimension reduction. The sequential forward selection method was used for feature selection to identify the 12 best features for machine learning classifiers. We used both random forest and support vector machine as classifiers. The area under the receiver operative curve (AUROC) was close to 0.9 between diseased (combining ADD and MCI) and the controls. AUROC was higher than 0.85 between SCD and controls, 0.90 between MCI and SCD, and above 0.85 between ADD and MCI. We can differentiate between adjacent phases of the AD spectrum with blood biomarkers and brain MR images with the help of machine learning algorithms.
引用
收藏
页码:3263 / 3270
页数:8
相关论文
共 47 条
[1]  
Abe S, 2010, ADV PATTERN RECOGNIT, P1, DOI 10.1007/978-1-84996-098-4_1
[2]  
Abner E L, 2015, J Prev Alzheimers Dis, V2, P11
[3]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[4]   Effect of errors in ground truth on classification accuracy [J].
Carlotto, Mark J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (18) :4831-4849
[5]   New Assay for Old Markers-Plasma Beta Amyloid of Mild Cognitive Impairment and Alzheimer's Disease [J].
Chiu, M. J. ;
Yang, S. Y. ;
Chen, T. F. ;
Chieh, J. J. ;
Huang, T. Z. ;
Yip, P. K. ;
Yang, H. C. ;
Cheng, T. W. ;
Chen, Y. F. ;
Hua, M. S. ;
Horng, H. E. .
CURRENT ALZHEIMER RESEARCH, 2012, 9 (10) :1142-1148
[6]   Nanoparticle-based immunomagnetic assay of plasma biomarkers for differentiating dementia and prodromal states of Alzheimer's disease - A cross-validation study [J].
Chiu, Ming-Jang ;
Chen, Ta-Fu ;
Hu, Chaur-Jong ;
Yan, Sui-Hing ;
Sun, Yu ;
Liu, Bing-Hsien ;
Chang, Yun-Tsui ;
Yang, Che-Chuan ;
Yang, Shieh-Yueh .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2020, 28 (28)
[7]   Plasma tau as a window to the brainnegative associations with brain volume and memory function in mild cognitive impairment and early alzheimer's disease [J].
Chiu, Ming-Jang ;
Chen, Ya-Fang ;
Chen, Ta-Fu ;
Yang, Shieh-Yueh ;
Yang, Fan-Pei Gloria ;
Tseng, Tien-Wen ;
Chieh, Jen-Jie ;
Chen, Jia-Chun Rare ;
Tzen, Kai-Yuan ;
Hua, Mau-Sun ;
Horng, Herng-Er .
HUMAN BRAIN MAPPING, 2014, 35 (07) :3132-3142
[8]   Combined Plasma Biomarkers for Diagnosing Mild Cognition Impairment and Alzheimer's Disease [J].
Chiu, Ming-Jang ;
Yang, Shieh-Yueh ;
Horng, Herni-Er ;
Yang, Che-Chuan ;
Chen, Ta-Fu ;
Chieh, Jen-Je ;
Chen, Hsin-Hsien ;
Chen, Ting-Chi ;
Ho, Chia-Shin ;
Chang, Shuo-Fen ;
Liu, Hao Chun ;
Hong, Chin-Yih ;
Yang, Hong-Chang .
ACS CHEMICAL NEUROSCIENCE, 2013, 4 (12) :1530-1536
[9]  
CHIU SI, 2019, 2019 INT C TECHNOLOG
[10]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297