Dynamic Properties of the Fractional-Order Logistic Equation of Complex Variables

被引:7
|
作者
El-Sayed, A. M. A. [2 ]
Ahmed, E. [3 ]
El-Saka, H. A. A. [1 ]
机构
[1] Damietta Univ, Dept Math, Fac Sci, New Damietta, Egypt
[2] Univ Alexandria, Fac Sci, Alexandria 21526, Egypt
[3] Mansoura Univ, Fac Sci, Mansoura 35516, Egypt
关键词
DIFFERENTIAL-EQUATIONS; CHAOS SYNCHRONIZATION; NUMERICAL-SOLUTION; STABILITY; SYSTEMS; LORENZ; LASERS; MODEL; CHEN;
D O I
10.1155/2012/251715
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamic properties (equilibrium points, local and global stability, chaos and bifurcation) of the continuous dynamical system of the logistic equation of complex variables. The existence and uniqueness of uniformly Lyapunov stable solution will be proved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] On a new fractional-order Logistic model with feedback control
    Manh Tuan Hoang
    A.M.Nagy
    AppliedMathematics:AJournalofChineseUniversities, 2021, 36 (03) : 390 - 402
  • [22] A Fractional-Order Dynamic PV Model
    AbdelAty, Amr M.
    Radwan, Ahmed G.
    Elwakil, Ahmed
    Psychalinos, Costas
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 607 - 610
  • [23] Fractional-Order in a Macroeconomic Dynamic Model
    David, S. A.
    Quintino, D. D.
    Soliani, J.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2142 - 2146
  • [24] Synchronization of a Fractional-order Complex System
    Dang, Honggang
    Yang, Xiaoya
    Liu, XiaoJun
    Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), 2016, 77 : 154 - 157
  • [25] Bifurcation of a Fractional-order Complex System
    Dang, Honggang
    Yang, Xiaoya
    Liu, XiaoJun
    Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), 2016, 77 : 145 - 148
  • [26] Dynamic analysis of quasi-periodic Mathieu equation with fractional-order derivative
    Guo J.
    Shen Y.
    Li H.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (12): : 3366 - 3375
  • [27] Fractional-order diffusion-wave equation
    ElSayed, AMA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 311 - 322
  • [28] Numerical solutions to the fractional-order wave equation
    Khader, M. M.
    Inc, Mustafa
    Adel, M.
    Akinlar, M. Ali
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (05):
  • [29] Dynamical analysis of fractional-order Mathieu equation
    Wen, Shaofang
    Shen, Yongjun
    Li, Xianghong
    Yang, Shaopu
    Xing, Haijun
    JOURNAL OF VIBROENGINEERING, 2015, 17 (05) : 2696 - 2709
  • [30] The fractional-order governing equation of Levy motion
    Benson, DA
    Wheatcraft, SW
    Meerschaert, MM
    WATER RESOURCES RESEARCH, 2000, 36 (06) : 1413 - 1423