Formation of a Si-Si3N4 nanocomposite from plasma enhanced chemical vapour deposition multilayer structures

被引:15
作者
Scardera, G. [1 ]
Bellet-Amalric, E. [1 ,2 ]
Bellet, D. [1 ,3 ]
Puzzer, T. [1 ]
Pink, E. [1 ]
Conibeer, G. [1 ]
机构
[1] Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia
[2] CEA Grenoble, Serv Phys Mat & Microstruct, Dept Rech Fondamentale Mat Condensee, F-38054 Grenoble 9, France
[3] INPG, Minatec, Mat & Genie Phys Lab, F-38016 Grenoble 1, France
关键词
nanocrystals; chemical vapour deposition processes; silicon nitride;
D O I
10.1016/j.jcrysgro.2008.05.019
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
This work reports on the crystallization of alpha-Si3N4, beta-Si3N4, and silicon in plasma enhanced chemical vapour deposition silicon nitride films grown with SiH4 and NH3 at 400 degrees C and annealed at 1150 degrees C. Nanometric multilayer structures, composed of alternating layers of silicon nitride and silicon-rich nitride, were used as the starting material. The final product is a thin-film Si-Si3N4 nanocomposite. The formation of this composite is verified using glancing incidence X-ray diffraction, transmission electron microscopy and Fourier transform infra-red spectroscopy. Annealing investigations indicate that the multilayer structure plays a key role in the formation of this composite and for the relatively low temperature formation of alpha- and beta-Si3N4 nanocrystals. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3685 / 3689
页数:5
相关论文
共 50 条
  • [31] Synthesis and spark plasma sintering of the α-Si3N4 nanopowder
    Khajelakzay, Mohammad
    Bakhshi, Saeed Reza
    Borhani, Gholam Hossein
    Ramazani, Mazaher
    CERAMICS INTERNATIONAL, 2016, 42 (13) : 14867 - 14872
  • [32] Formation mechanisms of α-Si3N4 crystals from amorphous Si3N4 powder synthesized by a low-temperature liquid-phase method
    Hu, Zunlan
    Zhao, Fangnan
    Xie, Zhipeng
    ADVANCED POWDER TECHNOLOGY, 2024, 35 (04)
  • [33] Si3N4 ceramics joined with Si3N4-Li2O-Y2O3 by spark plasma sintering
    Zhu, Lin-Lin
    Tan, Xing-Hao
    Chen, Jia-Hao
    Chen, Xu-Hui
    Dong, Chen-Hao
    Liu, Hong-Lan
    Jian, Yu-Jian
    Zhang, Guang-Xiang
    Lin, Hua-Tay
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (01)
  • [34] Coating of Si3N4 with HAp via atomic layer deposition
    Akin, Seniz R. Kushan
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2023, 24 (04): : 736 - 741
  • [35] Modelling of track formation in nanocrystalline inclusions in Si3N4
    Rymzhanov, R. A.
    Volkov, A. E.
    Zhalmagambetova, A.
    Zhumazhanova, A.
    Skuratov, V.
    Dauletbekova, A. K.
    Akilbekov, A. T.
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (08)
  • [36] Study of phase formation processes in the systems Li-N, Si3N4-Li3N, Si3N4-Li3N-Y2O3
    Bartnitskaya, TS
    Grigor'ev, ON
    Krushinskaya, LA
    Rogozinskaya, AA
    Klochkov, LA
    Dubovik, TV
    POWDER METALLURGY AND METAL CERAMICS, 2002, 41 (7-8) : 413 - 416
  • [37] Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration
    Xiang, Chao
    Jin, Warren
    Guo, Joel
    Peters, Jonathan D.
    Kennedy, M. J.
    Selvidge, Jennifer
    Morton, Paul A.
    Bowers, John E.
    OPTICA, 2020, 7 (01) : 20 - 21
  • [38] Charge transport-accumulation in multilayer structures with Si3N4 and thick(5.5 nm) SiO2
    Novikov, Yu. N.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (15)
  • [39] Tribology of Si3N4 containing in-situ grown Si2N2O processed from oxidized α-Si3N4 powders
    Qadir, Awais
    Ben Zine, Haroune Rachid
    Pinke, Peter
    Dusza, Jan
    CERAMICS INTERNATIONAL, 2021, 47 (12) : 17417 - 17426
  • [40] Growth of Si3N4 Thin Films on Si(111) Surface by RF-N2 Plasma Nitriding
    Chen, Wei-Chun
    Chen, Sheng
    Yu, Tung-Yuan
    Su, James
    Chen, Hung-Pin
    Lin, Yu-Wei
    Cheng, Chin-Pao
    COATINGS, 2021, 11 (01)