Study on vibration and power generation performance of percussive piezoelectric energy harvester device

被引:1
作者
Zhao, Qingling [1 ]
Meng, Jinpeng [1 ]
Liu, Shiyu [1 ]
Yu, Pengbo [1 ]
Song, Rujun [1 ,2 ]
Sui, Wentao [1 ,2 ]
机构
[1] Shandong Univ Technol, Sch Mech Engn, Zibo, Peoples R China
[2] Shandong Prov Key Lab Precis Mfg & Nontradit Machi, Zibo, Peoples R China
基金
中国国家自然科学基金;
关键词
Vibration energy; percussive type; piezoelectric; energy harvesting; LOW-FREQUENCY;
D O I
10.1080/00150193.2022.2130783
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a percussive piezoelectric energy harvester device is proposed, which can better obtain the vibration energy in the low frequency. Through the construction of the experimental prototype and the experimental test, the results show that the output power is affected by the acceleration and the thickness of the percussive beam. When the free end mass of the piezoelectric beam is 3 g and the excitation frequency is 12.8 Hz, the maximum output power of the energy harvester is 316.8 mu W. It is 2.3 times of the maximum output power of the energy harvester without mass.
引用
收藏
页码:214 / 224
页数:11
相关论文
共 42 条
[1]   Modeling a Nonlinear Harvester for Low Energy Vibrations [J].
Ando, Bruno ;
Baglio, Salvatore ;
Marletta, Vincenzo ;
Bulsara, Adi R. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (05) :1619-1627
[2]   Low-frequency and broadband vibration energy harvester driven by mechanical impact based on layer-separated piezoelectric beam [J].
Cao, Dongxing ;
Xia, Wei ;
Hu, Wenhua .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2019, 40 (12) :1777-1790
[3]   An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth [J].
Chen, Keyu ;
Gao, Qiang ;
Fang, Shitong ;
Zou, Donglin ;
Yang, Zhengbao ;
Liao, Wei-Hsin .
APPLIED ENERGY, 2021, 298
[4]   Displacement Linearity Improving Method of Stepping Piezoelectric Platform Based on Leg Wagging Mechanism [J].
Deng, Jie ;
Liu, Yingxiang ;
Li, Jing ;
Zhang, Shijing ;
Li, Kai .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (06) :6429-6432
[5]   A broadband magnetically coupled bistable energy harvester via parametric excitation [J].
Fan, Yimin ;
Ghayesh, Mergen H. ;
Lu, Tien-Fu .
ENERGY CONVERSION AND MANAGEMENT, 2021, 244
[6]   Vortex-induced swing (VIS) motion for energy harvesters and flowmeters [J].
Gong, Ying ;
Shan, Xiaobiao ;
Hu, Hong ;
Xie, Tao ;
Yang, Zhengbao .
APPLIED PHYSICS LETTERS, 2020, 117 (15)
[7]   A broadband piezo-electromagnetic hybrid energy harvester under combined vortex-induced and base excitations [J].
Hou, Chengwei ;
Li, Chunhui ;
Shan, Xiaobiao ;
Yang, Chongqiu ;
Song, Rujun ;
Xie, Tao .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 171
[8]   A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism [J].
Huang, Manjuan ;
Hou, Cheng ;
Li, Yunfei ;
Liu, Huicong ;
Wang, Fengxia ;
Chen, Tao ;
Yang, Zhan ;
Tang, Gang ;
Sun, Lining .
MICROMACHINES, 2019, 10 (10)
[9]   The Integrated Self Priming Circuit: An Autonomous Electrostatic Energy Harvester With Voltage Boosting [J].
Illenberger, Patrin K. ;
Rosset, Samuel ;
Madawala, Udaya K. ;
Anderson, Iain A. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (08) :6982-6991
[10]   An asymmetric bending-torsional piezoelectric energy harvester at low wind speed [J].
Jia, Jinda ;
Shan, Xiaobiao ;
Upadrashta, Deepesh ;
Xie, Tao ;
Yang, Yaowen ;
Song, Rujun .
ENERGY, 2020, 198