Superconvergence of mixed finite element approximations over quadrilaterals

被引:81
作者
Ewing, RE [1 ]
Liu, MM
Wang, JP
机构
[1] Texas A&M Univ, Inst Sci Computat, College Stn, TX 77843 USA
[2] Univ Wyoming, Inst Sci Computat, Laramie, WY 82071 USA
关键词
superconvergence; mixed finite element method;
D O I
10.1137/S0036142997322801
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A superconvergence result is established in this article for approximate solutions of second-order elliptic equations by mixed finite element methods over quadrilaterals. The superconvergence indicates an accuracy of O (h(k+2)) for the mixed finite element approximation if the Raviart-Thomas or Brezzi-Douglas-Fortin-Marini elements of order k are employed with optimal error estimate of O (h(k+1)). Numerical experiments are presented to illustrate the theoretical result.
引用
收藏
页码:772 / 787
页数:16
相关论文
共 20 条
[1]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[2]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[3]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[4]  
BREZZI F, 1987, RAIRO-MATH MODEL NUM, V21, P581
[5]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[6]  
BREZZI J, 1987, NUMER MATH, V52, P237
[7]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9
[8]  
DOUGLAS J, 1993, MAT APL COMPUT, V12, P183
[9]  
Douglas J. Jr., 1989, Calcolo, V26, P121, DOI 10.1007/BF02575724
[10]   SUPERCONVERGENCE FOR RECTANGULAR MIXED FINITE-ELEMENTS [J].
DURAN, R .
NUMERISCHE MATHEMATIK, 1990, 58 (03) :287-298