Multiple-soliton solutions of two extended model equations for shallow water waves

被引:59
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
关键词
Hirota bilinear method; tanh-coth method; multiple-soliton solutions; shallow water waves equations;
D O I
10.1016/j.amc.2008.01.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multiple-soliton solutions for two extensions of model equations for shallow water waves, presented in [M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974) 249-315; R. Hirota, J. Satsuma, N-soliton solutions of model equations for shallow water waves, J. Phys. Soc. Jpn. 40 (2) (1976) 611-612] are obtained. The two extensions possess identical dispersion relations but with different structures for the N-soliton solutions for N > 1. The Hirota bilinear method is used to determine multiple-soliton solutions of sech-squared type for these extended equations. The tanh-coth method is used to obtain single soliton solutions. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:790 / 799
页数:10
相关论文
共 30 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]  
[Anonymous], COMPUT APPL MATH 2
[3]  
HEREMAN W, 1991, COMPUT APPL MATH, V2, P842
[4]  
HEREMAN W, 1991, COMPUT APPL MATH, V22
[7]   N-SOLITON SOLUTIONS OF MODEL EQUATIONS FOR SHALLOW-WATER WAVES [J].
HIROTA, R ;
SATSUMA, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 40 (02) :611-612
[9]   NEW FORM OF BACKLUND TRANSFORMATIONS AND ITS RELATION TO INVERSE SCATTERING PROBLEM [J].
HIROTA, R .
PROGRESS OF THEORETICAL PHYSICS, 1974, 52 (05) :1498-1512
[10]  
Hirota R., 2004, DIRECT METHOD SOLITO, DOI [10.1017/CBO9780511543043, DOI 10.1017/CBO9780511543043]