Universal condition for critical percolation thresholds of kagome-like lattices

被引:30
作者
Ziff, Robert M. [1 ]
Gu, Hang
机构
[1] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 02期
基金
美国国家科学基金会;
关键词
lattice theory; percolation; probability; BOND; PROBABILITY;
D O I
10.1103/PhysRevE.79.020102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Lattices that can be represented in a kagome-like form are shown to satisfy a universal percolation criticality condition, expressed as a relation between P-3, the probability that all three vertices in the triangle connect, and P-0, the probability that none connect. A linear approximation for P-3(P-0) is derived and appears to provide a rigorous upper bound for critical thresholds. A numerically determined relation for P-3(P-0) gives thresholds for the kagome, site-bond honeycomb, (3-12(2)) lattice, and "stack-of-triangle" lattices that compare favorably with numerical results.
引用
收藏
页数:4
相关论文
共 26 条
  • [1] The percolation threshold in systems of permeable ellipses
    Ambrozic, M.
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2008, 41 (02) : 121 - 127
  • [2] Random cluster models on the triangular lattice
    Chayes, L
    Lei, HK
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (04) : 647 - 670
  • [3] Percolation transitions in two dimensions
    Feng, Xiaomei
    Deng, Youjin
    Blote, Henk W. J.
    [J]. PHYSICAL REVIEW E, 2008, 78 (03):
  • [4] Percolation in networks with voids and bottlenecks
    Haji-Akbari, Amir
    Ziff, Robert M.
    [J]. PHYSICAL REVIEW E, 2009, 79 (02):
  • [5] Transport exponent in a three-dimensional continuum tunneling-percolation model
    Johner, N.
    Grimaldi, C.
    Balberg, I.
    Ryser, P.
    [J]. PHYSICAL REVIEW B, 2008, 77 (17):
  • [6] Impact of composition of extended objects on percolation on a lattice
    Kondrat, Grzegorz
    [J]. PHYSICAL REVIEW E, 2008, 78 (01):
  • [7] Majewski M, 2007, ACTA PHYS POL B, V38, P2191
  • [8] Using symmetry to improve percolation threshold bounds
    May, WD
    Wierman, JC
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (04) : 549 - 566
  • [9] Topological estimation of percolation thresholds
    Neher, Richard A.
    Mecke, Klaus
    Wagner, Herbert
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [10] Estimation of bond percolation thresholds on the Archimedean lattices
    Parviainen, Robert
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) : 9253 - 9258