ALGEBRAIC GEOMETRIC CLASSIFICATION OF THE SINGULAR FLOW IN THE CONTRAST IMAGING PROBLEM IN NUCLEAR MAGNETIC RESONANCE

被引:7
作者
Bonnard, Bernard [1 ]
Chyba, Monique [2 ]
Jacquemard, Alain [1 ]
Marriott, John [2 ]
机构
[1] CNRS, UMR 5584, Inst Math Bourgogne, F-21078 Dijon, France
[2] Univ Hawaii, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
Mayer problem; geometric optimal control; contrast imaging; invariant theory; TRAJECTORIES;
D O I
10.3934/mcrf.2013.3.397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The analysis of the contrast problem in NMR medical imaging is essentially reduced to the analysis of the so-called singular trajectories of the system modeling the problem: a coupling of two spin 1/2 control systems. They are solutions of a constraint Hamiltonian vector field and restricting the dynamics to the zero level set of the Hamiltonian they de fine a vector field on B-1 x B-2, where B-1 and B-2 are the Bloch balls of the two spin particles. In this article we classify the behaviors of the solutions in relation with the relaxation parameters using the concept of feedback classification. The optimality status is analyzed using the feedback invariant concept of conjugate points.
引用
收藏
页码:397 / 432
页数:36
相关论文
共 25 条
[1]  
[Anonymous], MATH MODELS IN PRESS
[2]  
[Anonymous], 2005, ABSOLUTE DIFFERENTIA
[3]  
Arnol'd V., 1980, CHAPITRES THEORIE S
[4]   FEEDBACK EQUIVALENCE FOR NONLINEAR-SYSTEMS AND THE TIME OPTIMAL-CONTROL PROBLEM [J].
BONNARD, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (06) :1300-1321
[5]   THEORY OF SINGULARITIES OF INPUT-OUTPUT APPLICATION AND OPTIMALITY OF SINGULAR TRAJECTORIES IN THE OPTIMAL-TIME PROBLEM [J].
BONNARD, B ;
KUPKA, I .
FORUM MATHEMATICUM, 1993, 5 (02) :111-159
[6]  
Bonnard B., 2003, MATH APPLIC, V40
[7]   SINGULAR TRAJECTORIES AND THE CONTRAST IMAGING PROBLEM IN NUCLEAR MAGNETIC RESONANCE [J].
Bonnard, Bernard ;
Chyba, Monique ;
Marriott, John .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) :1325-1349
[8]   Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance [J].
Bonnard, Bernard ;
Cots, Olivier ;
Glaser, Steffen J. ;
Lapert, Marc ;
Sugny, Dominique ;
Zhang, Yun .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) :1957-1969
[9]  
Cox D. A., 2007, IDEALS VARIETIES ALG, V3/e
[10]   INVARIANT THEORY, OLD AND NEW [J].
DIEUDONN.JA ;
CARRELL, JB .
ADVANCES IN MATHEMATICS, 1970, 4 (01) :1-&