Absolute continuity for unbounded Jacobi matrices with constant row sums

被引:28
作者
Dombrowski, J [1 ]
Pedersen, S [1 ]
机构
[1] Wright State Univ, Dept Math, Dayton, OH 45435 USA
关键词
orthogonal polynomials; weighted shift; absolute continuity; Jacobi matrix;
D O I
10.1006/jmaa.2001.7808
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the spectral properties of a class of Jacobi matrices in which the Subdiagonal entries are quadratics and the row sums are constants. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:695 / 713
页数:19
相关论文
共 16 条
[1]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[2]  
[Anonymous], MONOGRAPHS STUDIES M
[3]  
Berezanskii J. M., 1968, TRANSL MATH MONOGRAP, V17
[4]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[5]   A spectral analysis for self-adjoint operators generated by a class of second order difference equations [J].
Clark, SL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 197 (01) :267-285
[6]   Orthogonal polynomials, spectral measures, and absolute continuity [J].
Dombrowski, J ;
Pedersen, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 65 (1-3) :115-124
[7]   Spectral measures and Jacobi matrices related to Laguerre-type systems of orthogonal polynomials [J].
Dombrowski, J ;
Pedersen, S .
CONSTRUCTIVE APPROXIMATION, 1997, 13 (03) :421-433
[8]  
Dunford N., 1963, LINEAR OPERATORS
[9]   ON THE SPECTRA OF INFINITE-DIMENSIONAL JACOBI MATRICES [J].
GERONIMO, JS .
JOURNAL OF APPROXIMATION THEORY, 1988, 53 (03) :251-265
[10]   SPECTRAL ANALYSIS OF 2ND ORDER DIFFERENCE EQUATIONS [J].
HINTON, DB ;
LEWIS, RT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 63 (02) :421-438