Critical edges/nodes for the minimum spanning tree problem: complexity and approximation

被引:23
作者
Bazgan, Cristina [1 ]
Toubaline, Sonia [1 ]
Vanderpooten, Daniel [1 ]
机构
[1] Univ Paris 09, LAMSADE, F-75775 Paris, France
关键词
Most vital edges/nodes; Min edge/node blocker; Minimum spanning tree; Complexity; Approximation; VITAL EDGES; RESPECT; INTERDICTION; NETWORK;
D O I
10.1007/s10878-011-9449-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study the complexity and the approximation of the k most vital edges (nodes) and min edge (node) blocker versions for the minimum spanning tree problem (MST). We show that the k most vital edges MST problem is NP-hard even for complete graphs with weights 0 or 1 and 3-approximable for graphs with weights 0 or 1. We also prove that the k most vital nodes MST problem is not approximable within a factor n (1-I mu) , for any I mu > 0, unless NP=ZPP, even for complete graphs of order n with weights 0 or 1. Furthermore, we show that the min edge blocker MST problem is NP-hard even for complete graphs with weights 0 or 1 and that the min node blocker MST problem is NP-hard to approximate within a factor 1.36 even for graphs with weights 0 or 1.
引用
收藏
页码:178 / 189
页数:12
相关论文
共 19 条
[1]  
Arora Sanjeev., 1996, APPROXIMATION ALGORI, P399
[2]  
Bar-Noy A., 1995, CSTR3539 U MAR
[3]  
Bazgan C, 2011, LECT NOTES COMPUT SC, V6831, P126, DOI 10.1007/978-3-642-22616-8_11
[4]  
Bazgan C, 2010, LECT NOTES COMPUT SC, V6508, P237, DOI 10.1007/978-3-642-17458-2_20
[5]   On the hardness of approximating minimum vertex cover [J].
Dinur, I ;
Safra, S .
ANNALS OF MATHEMATICS, 2005, 162 (01) :439-485
[6]   Increasing the weight of minimum spanning trees [J].
Frederickson, GN ;
Solis-Oba, R .
JOURNAL OF ALGORITHMS, 1999, 33 (02) :244-266
[7]   Clique is hard to approximate within n1-ε [J].
Håstad, J .
ACTA MATHEMATICA, 1999, 182 (01) :105-142
[8]   FINDING THE MOST VITAL EDGE WITH RESPECT TO MINIMUM SPANNING TREE IN WEIGHTED GRAPHS [J].
HSU, LH ;
JAN, RH ;
LEE, YC ;
HUNG, CN ;
CHERN, MS .
INFORMATION PROCESSING LETTERS, 1991, 39 (05) :277-281
[9]   EFFICIENT ALGORITHMS FOR FINDING THE MOST VITAL EDGE OF A MINIMUM SPANNING TREE [J].
IWANO, K ;
KATOH, N .
INFORMATION PROCESSING LETTERS, 1993, 48 (05) :211-213
[10]   On short paths interdiction problems: Total and node-wise limited interdiction [J].
Khachiyan, Leonid ;
Boros, Endre ;
Borys, Konrad ;
Elbassioni, Khaled ;
Gurvich, Vladimir ;
Rudolf, Gabor ;
Zhao, Jihui .
THEORY OF COMPUTING SYSTEMS, 2008, 43 (02) :204-233