Chaotic electron diffusion through stochastic webs enhances current flow in superlattices

被引:103
作者
Fromhold, TM [1 ]
Patanè, A [1 ]
Bujkiewicz, S [1 ]
Wilkinson, PB [1 ]
Fowler, D [1 ]
Sherwood, D [1 ]
Stapleton, SP [1 ]
Krokhin, AA [1 ]
Eaves, L [1 ]
Henini, M [1 ]
Sankeshwar, NS [1 ]
Sheard, FW [1 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会; 美国国家航空航天局;
关键词
D O I
10.1038/nature02445
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding how complex systems respond to change is of fundamental importance in the natural sciences. There is particular interest in systems whose classical newtonian motion becomes chaotic(1-22) as an applied perturbation grows. The transition to chaos usually occurs by the gradual destruction of stable orbits in parameter space, in accordance with the Kolmo-gorov-Arnold-Moser (KAM) theorem(1-3,6-9)-a cornerstone of nonlinear dynamics that explains, for example, gaps in the asteroid belt(2). By contrast, 'non-KAM' chaos switches on and off abruptly at critical values of the perturbation frequency(6-9). This type of dynamics has wide-ranging implications in the theory of plasma physics(10), tokamak fusion(11), turbulence(6,7,12), ion traps(13), and quasicrystals(6,8). Here we realize non-KAM chaos experimentally by exploiting the quantum properties of electrons in the periodic potential of a semiconductor superlattice(22-27) with an applied voltage and magnetic field. The onset of chaos at discrete voltages is observed as a large increase in the current flow due to the creation of unbound electron orbits, which propagate through intricate web patterns(6-10,12-16) in phase space. Non-KAM chaos therefore provides a mechanism for controlling the electrical conductivity of a condensed matter device: its extreme sensitivity could find applications in quantum electronics and photonics.
引用
收藏
页码:726 / 730
页数:5
相关论文
共 30 条
[11]   Effects of stochastic webs on chaotic electron transport in semiconductor superlattices [J].
Fromhold, TM ;
Krokhin, AA ;
Tench, CR ;
Bujkiewicz, S ;
Wilkinson, PB ;
Sheard, FW ;
Eaves, L .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :468031-468034
[12]   Quantum chaos in an ion trap: The delta-kicked harmonic oscillator [J].
Gardiner, SA ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1997, 79 (24) :4790-4793
[13]  
Gutzwiller MC, 1990, CHAOS CLASSICAL QUAN
[14]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518
[15]   Dynamical tunnelling of ultracold atoms [J].
Hensinger, WK ;
Häffer, H ;
Browaeys, A ;
Heckenberg, NR ;
Helmerson, K ;
McKenzie, C ;
Milburn, GJ ;
Phillips, WD ;
Rolston, SL ;
Rubinsztein-Dunlop, H ;
Upcroft, B .
NATURE, 2001, 412 (6842) :52-55
[16]   QUANTUM CHAOS [J].
JENSEN, RV .
NATURE, 1992, 355 (6358) :311-318
[17]  
Kamenev D. I., 2000, QUANTUM CHAOS HARMON
[18]   STOCHASTIC ION HEATING BY A PERPENDICULARLY PROPAGATING ELECTROSTATIC WAVE [J].
KARNEY, CFF ;
BERS, A .
PHYSICAL REVIEW LETTERS, 1977, 39 (09) :550-554
[19]  
Lichtenberg A.J., 1992, Regular and Chaotic Dynamics
[20]   Tailoring the electronic properties of GaAs/AlAs superlattices by InAs layer insertions [J].
Patanè, A ;
Sherwood, D ;
Eaves, L ;
Fromhold, TM ;
Henini, M ;
Main, PC ;
Hill, G .
APPLIED PHYSICS LETTERS, 2002, 81 (04) :661-663