Chaotic electron diffusion through stochastic webs enhances current flow in superlattices

被引:103
作者
Fromhold, TM [1 ]
Patanè, A [1 ]
Bujkiewicz, S [1 ]
Wilkinson, PB [1 ]
Fowler, D [1 ]
Sherwood, D [1 ]
Stapleton, SP [1 ]
Krokhin, AA [1 ]
Eaves, L [1 ]
Henini, M [1 ]
Sankeshwar, NS [1 ]
Sheard, FW [1 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会; 美国国家航空航天局;
关键词
D O I
10.1038/nature02445
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding how complex systems respond to change is of fundamental importance in the natural sciences. There is particular interest in systems whose classical newtonian motion becomes chaotic(1-22) as an applied perturbation grows. The transition to chaos usually occurs by the gradual destruction of stable orbits in parameter space, in accordance with the Kolmo-gorov-Arnold-Moser (KAM) theorem(1-3,6-9)-a cornerstone of nonlinear dynamics that explains, for example, gaps in the asteroid belt(2). By contrast, 'non-KAM' chaos switches on and off abruptly at critical values of the perturbation frequency(6-9). This type of dynamics has wide-ranging implications in the theory of plasma physics(10), tokamak fusion(11), turbulence(6,7,12), ion traps(13), and quasicrystals(6,8). Here we realize non-KAM chaos experimentally by exploiting the quantum properties of electrons in the periodic potential of a semiconductor superlattice(22-27) with an applied voltage and magnetic field. The onset of chaos at discrete voltages is observed as a large increase in the current flow due to the creation of unbound electron orbits, which propagate through intricate web patterns(6-10,12-16) in phase space. Non-KAM chaos therefore provides a mechanism for controlling the electrical conductivity of a condensed matter device: its extreme sensitivity could find applications in quantum electronics and photonics.
引用
收藏
页码:726 / 730
页数:5
相关论文
共 30 条
[1]   Chaotic front dynamics in semiconductor superlattices -: art. no. 193313 [J].
Amann, A ;
Schlesner, J ;
Wacker, A ;
Schöll, E .
PHYSICAL REVIEW B, 2002, 65 (19) :1-4
[2]   CHAOTIC STREAMLINES IN PRE-TURBULENT STATES [J].
BELOSHAPKIN, VV ;
CHERNIKOV, AA ;
NATENZON, MY ;
PETROVICHEV, BA ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
NATURE, 1989, 337 (6203) :133-137
[4]   Stark-cyclotron resonance in a semiconductor superlattice [J].
Canali, L ;
Lazzarino, M ;
Sorba, L ;
Beltram, F .
PHYSICAL REVIEW LETTERS, 1996, 76 (19) :3618-3621
[5]   MINIMAL CHAOS AND STOCHASTIC WEBS [J].
CHERNIKOV, AA ;
SAGDEEV, RZ ;
USIKOV, DA ;
ZAKHAROV, MY ;
ZASLAVSKY, GM .
NATURE, 1987, 326 (6113) :559-563
[6]   Stochastic ion behavior in subharmonic and superharmonic electrostatic waves [J].
Chia, PK ;
Schmitz, L ;
Conn, RW .
PHYSICS OF PLASMAS, 1996, 3 (05) :1545-1568
[7]   Manifestation of Arnol'd diffusion in quantum systems [J].
Demikhovskii, VY ;
Izrailev, FM ;
Malyshev, AI .
PHYSICAL REVIEW LETTERS, 2002, 88 (15) :4-154101
[8]   Quantum weak chaos in a degenerate system [J].
Demikhovskii, VY ;
Kamenev, DI ;
Luna-Acosta, GA .
PHYSICAL REVIEW E, 1999, 59 (01) :294-302
[9]   SUPERLATTICE AND NEGATIVE DIFFERENTIAL CONDUCTIVITY IN SEMICONDUCTORS [J].
ESAKI, L ;
TSU, R .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1970, 14 (01) :61-&
[10]   Tunneling spectroscopy of mixed stable-chaotic electron dynamics in a quantum well [J].
Fromhold, TM ;
Wilkinson, PB ;
Hayden, RK ;
Eaves, L ;
Sheard, FW ;
Miura, N ;
Henini, M .
PHYSICAL REVIEW B, 2002, 65 (15) :1553121-15531212