Chaotic electron diffusion through stochastic webs enhances current flow in superlattices

被引:102
作者
Fromhold, TM [1 ]
Patanè, A [1 ]
Bujkiewicz, S [1 ]
Wilkinson, PB [1 ]
Fowler, D [1 ]
Sherwood, D [1 ]
Stapleton, SP [1 ]
Krokhin, AA [1 ]
Eaves, L [1 ]
Henini, M [1 ]
Sankeshwar, NS [1 ]
Sheard, FW [1 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会; 美国国家航空航天局;
关键词
D O I
10.1038/nature02445
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding how complex systems respond to change is of fundamental importance in the natural sciences. There is particular interest in systems whose classical newtonian motion becomes chaotic(1-22) as an applied perturbation grows. The transition to chaos usually occurs by the gradual destruction of stable orbits in parameter space, in accordance with the Kolmo-gorov-Arnold-Moser (KAM) theorem(1-3,6-9)-a cornerstone of nonlinear dynamics that explains, for example, gaps in the asteroid belt(2). By contrast, 'non-KAM' chaos switches on and off abruptly at critical values of the perturbation frequency(6-9). This type of dynamics has wide-ranging implications in the theory of plasma physics(10), tokamak fusion(11), turbulence(6,7,12), ion traps(13), and quasicrystals(6,8). Here we realize non-KAM chaos experimentally by exploiting the quantum properties of electrons in the periodic potential of a semiconductor superlattice(22-27) with an applied voltage and magnetic field. The onset of chaos at discrete voltages is observed as a large increase in the current flow due to the creation of unbound electron orbits, which propagate through intricate web patterns(6-10,12-16) in phase space. Non-KAM chaos therefore provides a mechanism for controlling the electrical conductivity of a condensed matter device: its extreme sensitivity could find applications in quantum electronics and photonics.
引用
收藏
页码:726 / 730
页数:5
相关论文
共 30 条
  • [1] Chaotic front dynamics in semiconductor superlattices -: art. no. 193313
    Amann, A
    Schlesner, J
    Wacker, A
    Schöll, E
    [J]. PHYSICAL REVIEW B, 2002, 65 (19) : 1 - 4
  • [2] CHAOTIC STREAMLINES IN PRE-TURBULENT STATES
    BELOSHAPKIN, VV
    CHERNIKOV, AA
    NATENZON, MY
    PETROVICHEV, BA
    SAGDEEV, RZ
    ZASLAVSKY, GM
    [J]. NATURE, 1989, 337 (6203) : 133 - 137
  • [4] Stark-cyclotron resonance in a semiconductor superlattice
    Canali, L
    Lazzarino, M
    Sorba, L
    Beltram, F
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (19) : 3618 - 3621
  • [5] MINIMAL CHAOS AND STOCHASTIC WEBS
    CHERNIKOV, AA
    SAGDEEV, RZ
    USIKOV, DA
    ZAKHAROV, MY
    ZASLAVSKY, GM
    [J]. NATURE, 1987, 326 (6113) : 559 - 563
  • [6] Stochastic ion behavior in subharmonic and superharmonic electrostatic waves
    Chia, PK
    Schmitz, L
    Conn, RW
    [J]. PHYSICS OF PLASMAS, 1996, 3 (05) : 1545 - 1568
  • [7] Manifestation of Arnol'd diffusion in quantum systems
    Demikhovskii, VY
    Izrailev, FM
    Malyshev, AI
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (15) : 4 - 154101
  • [8] Quantum weak chaos in a degenerate system
    Demikhovskii, VY
    Kamenev, DI
    Luna-Acosta, GA
    [J]. PHYSICAL REVIEW E, 1999, 59 (01): : 294 - 302
  • [9] SUPERLATTICE AND NEGATIVE DIFFERENTIAL CONDUCTIVITY IN SEMICONDUCTORS
    ESAKI, L
    TSU, R
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1970, 14 (01) : 61 - &
  • [10] Tunneling spectroscopy of mixed stable-chaotic electron dynamics in a quantum well
    Fromhold, TM
    Wilkinson, PB
    Hayden, RK
    Eaves, L
    Sheard, FW
    Miura, N
    Henini, M
    [J]. PHYSICAL REVIEW B, 2002, 65 (15) : 1553121 - 15531212