Synergistic Effect of SnO2/ZnWO4 Core-Shell Nanorods with High Reversible Lithium Storage Capacity

被引:22
作者
Xing, Li-Li [1 ]
Yuan, Shuang [2 ]
He, Bin [1 ]
Zhao, Ya-Yu [1 ]
Wu, Xiao-Ling [1 ]
Xue, Xin-Yu [1 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110004, Peoples R China
[2] Jilin Univ, Coll Mat Sci & Engn, Changchun 130022, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
core-shell structures; electrochemistry; lithium ion batteries; nanostructures; LI-ION BATTERIES; NEGATIVE ELECTRODES; ANODE MATERIAL; PERFORMANCE; TIN; NANOPARTICLES; COMPOSITES; CELL;
D O I
10.1002/asia.201300337
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High reversible lithium storage capacity is obtained from novel SnO2/ZnWO4 core-shell nanorods. At C/20 (20h per half cycle) rate, the reversible capacity of SnO2/ZnWO4 core-shell nanorods is as high as 1000mAhg-1, much higher than that of pure ZnWO4, SnO2, or the traditional theoretical result of the simple mixture. Such performance can be attributed to the synergistic effect between the nanostructured SnO2 and ZnWO4. The distinct electrochemical activity of ZnWO4 nanorods probably activates the irreversible capacity of the SnO2 nanoparticles. These results indicate that high-performance lithium ion batteries can be realized by introducing the synergistic effect of one-dimensional core-shell nanocomposites.
引用
收藏
页码:1530 / 1535
页数:6
相关论文
共 31 条
[1]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[2]   Synthesis of Surface-Functionalized WS2 Nanosheets and Performance as Li-Ion Battery Anodes [J].
Bhandavat, R. ;
David, L. ;
Singh, G. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (11) :1523-1530
[3]   Thin-film crystalline SnO2-lithium electrodes [J].
Brousse, T ;
Retoux, R ;
Herterich, U ;
Schleich, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :1-4
[4]   One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties [J].
Chen, Jun Song ;
Li, Chang Ming ;
Zhou, Wen Wen ;
Yan, Qing Yu ;
Archer, Lynden A. ;
Lou, Xiong Wen .
NANOSCALE, 2009, 1 (02) :280-285
[5]   High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn) [J].
Courtel, Fabrice M. ;
Duncan, Hugues ;
Abu-Lebdeh, Yaser ;
Davidson, Isobel J. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :10206-10218
[6]   On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium [J].
Courtney, IA ;
McKinnon, WR ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (01) :59-68
[7]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[8]   An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays [J].
Guo, Wenxi ;
Xue, Xinyu ;
Wang, Sihong ;
Lin, Changjian ;
Wang, Zhong Lin .
NANO LETTERS, 2012, 12 (05) :2520-2523
[9]   Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries [J].
Lee, KT ;
Lytle, JC ;
Ergang, NS ;
Oh, SM ;
Stein, A .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (04) :547-556
[10]   Reversible Lithium-Ion Insertion in Molybdenum Oxide Nanoparticles [J].
Lee, Se-Hee ;
Kim, Yong-Hyun ;
Deshpande, Rohit ;
Parilla, Philip A. ;
Whitney, Erin ;
Gillaspie, Dane T. ;
Jones, Kim M. ;
Mahan, A. Harv ;
Zhang, Shengbai ;
Dillon, Anne C. .
ADVANCED MATERIALS, 2008, 20 (19) :3627-+