Exchange dynamical quantum groups

被引:60
作者
Etingof, P [1 ]
Varchenko, A
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200050665
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For any simple Lie algebra g and any complex number q which is not zero or a nontrivial root of unity, we construct a dynamical quantum group (Hopf algebroid), whose representation theory is essentially the same as the representation theory of the quantum group U-q(g). This dynamical quantum group is obtained from the fusion and exchange relations between intertwining operators in representation theory of U-q(g). and is an algebraic structure standing behind these relations.
引用
收藏
页码:19 / 52
页数:34
相关论文
共 23 条
[1]  
ARNAUDON D, QALG9712037
[2]   A quasi-Hopf algebra interpretation of quantum 3-j and 6-j symbols and difference equations [J].
Babelon, O ;
Bernard, D ;
Billey, E .
PHYSICS LETTERS B, 1996, 375 (1-4) :89-97
[3]  
CARTER J, 1995, MATH NOTES PRINCETON
[4]  
Chari V., 1995, A Guide to Quantum Groups
[5]  
Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
[6]  
ETINGOF P, 1995, COMPOS MATH, V98, P91
[7]  
ETINGOF P, IN PRESS COMP MATH
[8]  
ETINGOF P, 1997, SOLUTIONS QUANTUM DY
[9]  
ETINGOF P, 1998, COMMUN MATH PHYS
[10]  
Etingof P.I., 1998, Mathematical surveys and monographs, V58