Mixed isogeometric analysis of strongly coupled diffusion in porous materials

被引:24
作者
Dortdivanlioglu, B. [1 ]
Krischok, A. [1 ]
da Veiga, L. Beirao [2 ]
Linder, C. [1 ]
机构
[1] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20125 Milan, Italy
基金
美国国家科学基金会;
关键词
coupled diffusion; inf-sup condition; isogeometric analysis; NURBS; porous materials; subdivision technique; FINITE-ELEMENT METHODS; PHASE-FIELD MODEL; LAGRANGIAN-MULTIPLIERS; ELASTOMERIC MATERIALS; DEFORMATION ANALYSIS; STRUCTURAL-ANALYSIS; FLUID PERMEATION; NURBS; MEDIA; APPROXIMATION;
D O I
10.1002/nme.5731
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we develop a mixed isogeometric analysis approach based on subdivision stabilization to study strongly coupled diffusion in solids in both small and large deformation ranges. Coupling the fluid pressure and the solid deformation, the mixed formulation suffers from numerical instabilities in the incompressible and the nearly incompressible limit due to the violation of the inf-sup condition. We investigate this issue using subdivision-stabilized nonuniform rational B-spline (NURBS) elements, as well as different families of mixed isogeometric analysis techniques, and assess their stability through a numerical inf-sup test. Furthermore, the validity of the inf-sup stability test in poromechanics is supported by a mathematical proof concerning the corresponding stability estimate. Finally, two numerical examples involving a rigid strip foundation on saturated soil and a swelling hydrogel structure are presented to validate the stability and to demonstrate the robustness of the proposed approach.
引用
收藏
页码:28 / 46
页数:19
相关论文
共 80 条
[1]  
[Anonymous], 2013, SERIES COMPUTATIONAL
[2]   A fully "locking-free" isogeometric approach for plane linear elasticity problems: A stream function formulation [J].
Auricchio, F. ;
da Veiga, L. Beirao ;
Buffa, A. ;
Lovadina, C. ;
Reali, A. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :160-172
[3]   Innovative and efficient stent flexibility simulations based on isogeometric analysis [J].
Auricchio, F. ;
Conti, M. ;
Ferraro, M. ;
Morganti, S. ;
Reali, A. ;
Taylor, R. L. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 :347-361
[4]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[5]   The inf-sup condition and its evaluation for mixed finite element methods [J].
Bathe, KJ .
COMPUTERS & STRUCTURES, 2001, 79 (02) :243-252
[6]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[7]   Isogeometric analysis of THM coupled processes in ground freezing [J].
Bekele, Yared W. ;
Kyokawa, Hiroyuki ;
Kvarving, Arne M. ;
Kvamsdal, Trond ;
Nordal, Steinar .
COMPUTERS AND GEOTECHNICS, 2017, 88 :129-145
[8]   THEORY OF FINITE DEFORMATIONS OF POROUS SOLIDS [J].
BIOT, MA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 21 (07) :597-&
[9]   General theory of three-dimensional consolidation [J].
Biot, MA .
JOURNAL OF APPLIED PHYSICS, 1941, 12 (02) :155-164
[10]  
Bressan A., 2017, IMA Journal of Numerical Analysis, pdrx031