ON THE NONEXISTENCE OF LEFT-INVARIANT RICCI SOLITONS - A CONJECTURE AND EXAMPLES

被引:2
作者
Taketomi, Y. [1 ]
Tamaru, H. [1 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, 1-3-1 Kagamiyama, Higashihiroshima 7398526, Japan
关键词
LIE-GROUPS; EINSTEIN SOLVMANIFOLDS; SYMMETRIC-SPACES; FOLIATIONS; METRICS;
D O I
10.1007/s00031-017-9439-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we conjecture an obstruction for arbitrary Lie groups to admit left-invariant Ricci solitons, from the viewpoint of isometric actions on noncompact symmetric spaces. We also construct examples of Lie groups that affirm the conjecture, in any dimension greater than two.
引用
收藏
页码:257 / 270
页数:14
相关论文
共 29 条
[1]  
Alekseevsky DV., 1975, FUNCTIONAL ANAL APPL, V9, P5, DOI DOI 10.1007/BF01075445
[2]   Homogeneous Ricci Solitons in Low Dimensions [J].
Arroyo, Romina M. ;
Lafuente, Ramiro .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (13) :4901-4932
[3]   FILIFORM NILSOLITONS OF DIMENSION 8 [J].
Arroyo, Romina M. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (04) :1025-1043
[4]  
Berndt J, 2003, J DIFFER GEOM, V63, P1
[5]   Cohomogeneity one actions on symmetric spaces of noncompact type [J].
Berndt, Juergen ;
Tamaru, Hiroshi .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 683 :129-159
[6]  
Berndt J, 2010, J DIFFER GEOM, V86, P191
[7]   Classification of 7-dimensional einstein nilradicals [J].
Fernandez-Culma, E. A. .
TRANSFORMATION GROUPS, 2012, 17 (03) :639-656
[8]   Three-dimensional solvsolitons and the minimality of the corresponding submanifolds [J].
Hashinaga, Takahiro ;
Tamaru, Hiroshi .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (06)
[9]   Milnor-type theorems for left-invariant Riemannian metrics on Lie groups [J].
Hashinaga, Takahiro ;
Tamaru, Hiroshi ;
Terada, Kazuhiro .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (02) :669-684
[10]   Noncompact homogeneous Einstein spaces [J].
Heber, J .
INVENTIONES MATHEMATICAE, 1998, 133 (02) :279-352