Sn-catalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass

被引:31
作者
Cho, Jinyoun [1 ]
O'Donnell, Benedict [1 ,2 ]
Yu, Linwei [1 ]
Kim, Ka-Hyun [1 ,2 ]
Ngo, Irene [3 ]
Roca i Cabarrocas, Pere [1 ]
机构
[1] Ecole Polytech, Lab Phys Interfaces & Couches Minces, CNRS, F-91128 Palaiseau, France
[2] Total SA, Gas & Power, R&D Div, Courbevoie, France
[3] CNRS, Lab Genie Elect Paris, SUPELEC, UMR 8507, F-91192 Gif Sur Yvette, France
来源
PROGRESS IN PHOTOVOLTAICS | 2013年 / 21卷 / 01期
关键词
silicon nanowire; radial junction; solar cell; photovoltaic; light trapping; PHOTOVOLTAIC APPLICATIONS; ARRAYS;
D O I
10.1002/pip.1245
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We present a single pump-down process to texture hydrogenated amorphous silicon solar cells. Mats of p-type crystalline silicon nanowires were grown to lengths of 1 mm on glass covered with flat ZnO using a plasma-assisted Sn-catalyzed vapor-liquid-solid process. The nanowires were covered with conformal layers of intrinsic and n-type hydrogenated amorphous silicon and a sputtered layer of indium tin oxide. Each cell connects in excess of 10(7) radial junctions over areas of 0.126 cm(2). Devices reach open-circuit voltages of 0.8 V and short-circuit current densities of 12.4 mA cm(-2), matching those of hydrogenated amorphous silicon cells deposited on textured substrates. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:77 / 81
页数:5
相关论文
共 25 条
  • [1] High-resolution detection of Au catalyst atoms in Si nanowires
    Allen, Jonathan E.
    Hemesath, Eric R.
    Perea, Daniel E.
    Lensch-Falk, Jessica L.
    Li, Z. Y.
    Yin, Feng
    Gass, Mhairi H.
    Wang, Peng
    Bleloch, Andrew L.
    Palmer, Richard E.
    Lauhon, Lincoln J.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (03) : 168 - 173
  • [2] DOPANT DISTRIBUTION IN SILICON LIQUID-PHASE EPITAXIAL LAYERS - MELTBACK EFFECTS
    BALIGA, BJ
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (01) : 138 - 143
  • [3] PROPERTIES OF GOLD IN SILICON
    BULLIS, WM
    [J]. SOLID-STATE ELECTRONICS, 1966, 9 (02) : 143 - &
  • [4] Light Trapping in Silicon Nanowire Solar Cells
    Garnett, Erik
    Yang, Peidong
    [J]. NANO LETTERS, 2010, 10 (03) : 1082 - 1087
  • [5] Determination of the mobility gap of microcrystalline silicon and of the band discontinuities at the amorphous microcrystalline silicon interface using in situ Kelvin probe technique
    Hamma, S
    Roca i Cabarrocas, PI
    [J]. APPLIED PHYSICS LETTERS, 1999, 74 (21) : 3218 - 3220
  • [6] Analysis of optical absorption in silicon nanowire Arrays for photovoltaic applications
    Hu, Lu
    Chen, Gang
    [J]. NANO LETTERS, 2007, 7 (11) : 3249 - 3252
  • [7] Synthesis of tin-catalyzed silicon nanowires using the hydrogen radical-assisted deposition method and its application for solar cells
    Jeon, Minsung
    Kamisako, Koichi
    [J]. CURRENT APPLIED PHYSICS, 2010, 10 : S191 - S195
  • [8] Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells -: art. no. 114302
    Kayes, BM
    Atwater, HA
    Lewis, NS
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)
  • [9] Toward cost-effective solar energy use
    Lewis, Nathan S.
    [J]. SCIENCE, 2007, 315 (5813) : 798 - 801
  • [10] High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography
    Lu, Yuerui
    Lal, Amit
    [J]. NANO LETTERS, 2010, 10 (11) : 4651 - 4656