Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation

被引:594
作者
Horlbeck, Max A. [1 ,2 ,3 ,4 ]
Gilbert, Luke A. [1 ,2 ,3 ,4 ]
Villalta, Jacqueline E. [1 ,2 ,3 ,4 ]
Adamson, Britt [1 ,2 ,3 ,4 ]
Pak, Ryan A. [1 ,5 ]
Chen, Yuwen [1 ,2 ,3 ,4 ]
Fields, Alexander P. [1 ,2 ,3 ,4 ]
Park, Chong Yon [1 ,5 ]
Corn, Jacob E. [5 ,6 ]
Kampmann, Martin [1 ,2 ,3 ,4 ,7 ]
Weissman, Jonathan S. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Ctr RNA Syst Biol, San Francisco, CA 94143 USA
[5] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[7] Univ Calif San Francisco, Inst Neurodegenerat Dis, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
K562; CELL-LINE; GENOMIC LOCI; SCREENS; EXPRESSION; AMPLIFICATION; TRANSCRIPTION; PLATFORM; DESIGN; SGRNAS;
D O I
10.7554/eLife.19760
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA (Horlbeck et al., 2 0 1 6). Here, we build on this observation with a comprehensive algorithm that incorporates chromatin, position, and sequence features to accurately predict highly effective single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general strategy for identifying Cas9 target sites.
引用
收藏
页数:20
相关论文
共 60 条
[1]   Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting [J].
Aguirre, Andrew J. ;
Meyers, Robin M. ;
Weir, Barbara A. ;
Vazquez, Francisca ;
Zhang, Cheng-Zhong ;
Ben-David, Uri ;
Cook, April ;
Ha, Gavin ;
Harrington, William F. ;
Doshi, Mihir B. ;
Kost-Alimova, Maria ;
Gill, Stanley ;
Xu, Han ;
Ali, Levi D. ;
Jiang, Guozhi ;
Pantel, Sasha ;
Lee, Yenarae ;
Goodale, Amy ;
Cherniack, Andrew D. ;
Oh, Coyin ;
Kryukov, Gregory ;
Cowley, Glenn S. ;
Garraway, Levi A. ;
Stegmaier, Kimberly ;
Roberts, Charles W. ;
Golub, Todd R. ;
Meyerson, Matthew ;
Root, David E. ;
Tsherniak, Aviad ;
Hahn, William C. .
CANCER DISCOVERY, 2016, 6 (08) :914-929
[2]   A Systematic Mammalian Genetic Interaction Map Reveals Pathways Underlying Ricin Susceptibility [J].
Bassik, Michael C. ;
Kampmann, Martin ;
Lebbink, Robert Jan ;
Wang, Shuyi ;
Hein, Marco Y. ;
Poser, Ina ;
Weibezahn, Jimena ;
Horlbeck, Max A. ;
Chen, Siyuan ;
Mann, Matthias ;
Hyman, Anthony A. ;
LeProust, Emily M. ;
McManus, Michael T. ;
Weissman, Jonathan S. .
CELL, 2013, 152 (04) :909-922
[3]   Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation [J].
Braun, Christian J. ;
Bruno, Peter M. ;
Horlbeck, Max A. ;
Gilbert, Luke A. ;
Weissman, Jonathan S. ;
Hemann, Michael T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (27) :E3892-E3900
[4]  
Chari R, 2015, NAT METHODS, V12, P823, DOI [10.1038/NMETH.3473, 10.1038/nmeth.3473]
[5]  
Chavez A, 2016, NAT METHODS, V13, P563, DOI [10.1038/NMETH.3871, 10.1038/nmeth.3871]
[6]  
Chavez A, 2015, NAT METHODS, V12, P326, DOI [10.1038/nmeth.3312, 10.1038/NMETH.3312]
[7]   Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System [J].
Chen, Baohui ;
Gilbert, Luke A. ;
Cimini, Beth A. ;
Schnitzbauer, Joerg ;
Zhang, Wei ;
Li, Gene-Wei ;
Park, Jason ;
Blackburn, Elizabeth H. ;
Weissman, Jonathan S. ;
Qi, Lei S. ;
Huang, Bo .
CELL, 2013, 155 (07) :1479-1491
[8]   Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis [J].
Chen, Sidi ;
Sanjana, Neville E. ;
Zheng, Kaijie ;
Shalem, Ophir ;
Lee, Kyungheon ;
Shi, Xi ;
Scott, David A. ;
Song, Jun ;
Pan, Jen Q. ;
Weissleder, Ralph ;
Lee, Hakho ;
Zhang, Feng ;
Sharp, Phillip A. .
CELL, 2015, 160 (06) :1246-1260
[9]   Biopython']python: freely available Python']Python tools for computational molecular biology and bioinformatics [J].
Cock, Peter J. A. ;
Antao, Tiago ;
Chang, Jeffrey T. ;
Chapman, Brad A. ;
Cox, Cymon J. ;
Dalke, Andrew ;
Friedberg, Iddo ;
Hamelryck, Thomas ;
Kauff, Frank ;
Wilczynski, Bartek ;
de Hoon, Michiel J. L. .
BIOINFORMATICS, 2009, 25 (11) :1422-1423
[10]   The Genetic Landscape of a Cell [J].
Costanzo, Michael ;
Baryshnikova, Anastasia ;
Bellay, Jeremy ;
Kim, Yungil ;
Spear, Eric D. ;
Sevier, Carolyn S. ;
Ding, Huiming ;
Koh, Judice L. Y. ;
Toufighi, Kiana ;
Mostafavi, Sara ;
Prinz, Jeany ;
Onge, Robert P. St. ;
VanderSluis, Benjamin ;
Makhnevych, Taras ;
Vizeacoumar, Franco J. ;
Alizadeh, Solmaz ;
Bahr, Sondra ;
Brost, Renee L. ;
Chen, Yiqun ;
Cokol, Murat ;
Deshpande, Raamesh ;
Li, Zhijian ;
Lin, Zhen-Yuan ;
Liang, Wendy ;
Marback, Michaela ;
Paw, Jadine ;
Luis, Bryan-Joseph San ;
Shuteriqi, Ermira ;
Tong, Amy Hin Yan ;
van Dyk, Nydia ;
Wallace, Iain M. ;
Whitney, Joseph A. ;
Weirauch, Matthew T. ;
Zhong, Guoqing ;
Zhu, Hongwei ;
Houry, Walid A. ;
Brudno, Michael ;
Ragibizadeh, Sasan ;
Papp, Balazs ;
Pal, Csaba ;
Roth, Frederick P. ;
Giaever, Guri ;
Nislow, Corey ;
Troyanskaya, Olga G. ;
Bussey, Howard ;
Bader, Gary D. ;
Gingras, Anne-Claude ;
Morris, Quaid D. ;
Kim, Philip M. ;
Kaiser, Chris A. .
SCIENCE, 2010, 327 (5964) :425-431