Fβ support vector machines

被引:0
作者
Callut, K [1 ]
Dupont, P [1 ]
机构
[1] Catholic Univ Louvain, INGI, Dept Comp Sci & Engn, B-1348 Louvain, Belgium
来源
PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5 | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce in this paper F-beta SVMs, a new parametrization of support vector machines. It allows to optimize a SVM in terms of F-beta, a classical information retrieval criterion, instead of the usual classification rate. Experiments illustrate the advantages of this approach with respect to the traditionnal 2-norm soft-margin SVM when precision and recall are of unequal importance. An automatic model selection procedure based on the generalization F-beta score is introduced. It relies on the results of Chapelle, Vapnik et al. [4] about the use of gradient-based techniques in SVM model selection. The derivatives of a F-beta loss function with respect to the hyperparameters; C and the width sigma of a gaussian kernel are formally defined. The model is then selected by performing a gradient descent of the F-beta loss function over the set of hyperparameters. Experiments on artificial and real-life data show the benefits of this method when the F-beta score is considered.
引用
收藏
页码:1443 / 1448
页数:6
相关论文
共 21 条
[1]   Applying support vector machines to imbalanced datasets [J].
Akbani, R ;
Kwek, S ;
Japkowicz, N .
MACHINE LEARNING: ECML 2004, PROCEEDINGS, 2004, 3201 :39-50
[2]  
AMERIO S, 2004, P INT JOINT C NEUR N
[3]  
[Anonymous], 1998, Encyclopedia of Biostatistics
[4]  
BALKE C, 1998, UCI REPOSITORY MACHI
[5]   Choosing multiple parameters for support vector machines [J].
Chapelle, O ;
Vapnik, V ;
Bousquet, O ;
Mukherjee, S .
MACHINE LEARNING, 2002, 46 (1-3) :131-159
[6]   Radius margin bounds for support vector machines with the RBF kernel [J].
Chung, KM ;
Kao, WC ;
Sun, CL ;
Wang, LL ;
Lin, CJ .
NEURAL COMPUTATION, 2003, 15 (11) :2643-2681
[7]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[8]  
CRITIANINI JST, 2002, INTRO SUPPORT VECTOR
[9]   Evaluation of simple performance measures for tuning SVM hyperparameters [J].
Duan, K ;
Keerthi, SS ;
Poo, AN .
NEUROCOMPUTING, 2003, 51 :41-59
[10]   A RAPIDLY CONVERGENT DESCENT METHOD FOR MINIMIZATION [J].
FLETCHER, R ;
POWELL, MJD .
COMPUTER JOURNAL, 1963, 6 (02) :163-&