Integrability and zero-Hopf bifurcation in the Sprott A system

被引:7
作者
Barreira, Luis [1 ]
Llibre, Jaume [2 ]
Valls, Claudia [1 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2020年 / 162卷
基金
欧盟地平线“2020”;
关键词
Darboux integrability; Sprott A system; Zero-Hopf bifurcation; Averaging theory; CANONICAL DYNAMICS; CURVES;
D O I
10.1016/j.bulsci.2020.102874
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first objective of this paper is to study the Darboux integrability of the polynomial differential system (x) over dot = y, (y)over dot = -x - yz, (z)over dot = y(2) - a and the second one is to show that for a > 0 sufficiently small this model exhibits one small amplitude periodic solution that bifurcates from the origin of coordinates when a = 0. This model was introduced by Hoover as the first example of a differential equation with a hidden attractor and it was used by Sprott to illustrate a differential equation having a chaotic behavior without equilibrium points, and now this system is known as the Sprott A system. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1991, Nonlinear Differential Equations and Dynamical Systems
[2]  
Bleecker D., 1992, BASIC PARTIAL DIFFER
[3]  
Castellanos V., 2013, J. Appl. Math. Phys, V1, P31
[4]   The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities [J].
Champneys, AR ;
Kirk, V .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :77-105
[5]   Multiplicity of invariant algebraic curves in polynomial vector fields [J].
Christopher, Colin ;
Llibre, Jaume ;
Pereira, Jorge Vitorio .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (01) :63-117
[6]  
Darboux G, 1878, B SCI MATH, V2, P151
[7]  
Dumortier F, 2006, UNIVERSITEXT, P1
[8]  
Guckenheimer J., 1980, LECT NOTES MATH, V898, P99, DOI DOI 10.1007/BFB0091910
[9]  
Guckenheimer J., 2013, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, V42
[10]   SOME SIMPLE CHAOTIC FLOWS - REMARK [J].
HOOVER, WG .
PHYSICAL REVIEW E, 1995, 51 (01) :759-760