Quasi-semiregular automorphisms of cubic and tetravalent arc-transitive graphs

被引:2
作者
Feng, Yan-Quan [1 ]
Hujdurovic, Ademir [2 ,3 ]
Kovacs, Istvan [2 ,3 ]
Kutnar, Klavdija [2 ,3 ]
Marusic, Dragan [2 ,3 ,4 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Univ Primorska, UP IAM, Muzejski Trg 2, Koper 6000, Slovenia
[3] Univ Primorska, UP FAMNIT, Glagoljaska 8, Koper 6000, Slovenia
[4] Univ Ljubljana, IMFM, Jadranska 19, Ljubljana 1000, Slovenia
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
Cubic graph; Tetravalent graph; Arc-transitive; Quasi-semiregular automorphism; PERMUTATION-GROUPS; SERNIREGULAR AUTOMORPHISMS; VERTEX; ELEMENTS;
D O I
10.1016/j.amc.2019.01.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A non-trivial automorphism g of a graph Gamma is called semiregular if the only power g(i) fixing a vertex is the identity mapping, and it is called quasi-semiregular if it fixes one vertex and the only power g(i) fixing another vertex is the identity mapping. In this paper, we prove that K-4, the Petersen graph and the Coxeter graph are the only connected cubic arc-transitive graphs admitting a quasi-semiregular automorphism, and K-5 is the only connected tetravalent 2-arc-transitive graph admitting a quasi-semiregular automorphism. It will also be shown that every connected tetravalent G-arc-transitive graph, where G is a solvable group containing a quasi-semiregular automorphism, is a normal Cayley graph of an abelian group of odd order. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:329 / 337
页数:9
相关论文
共 34 条
[1]  
Baik YG, 1998, ALGEBR COLLOQ, V5, P297
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]   Serniregular automorphisms of vertex-transitive cubic graphs [J].
Cameron, P ;
Sheehan, J ;
Spiga, P .
EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (06) :924-930
[4]   Transitive permutation groups without semiregular subgroups [J].
Cameron, PJ ;
Giudici, M ;
Jones, GA ;
Kantor, WM ;
Klin, MH ;
Marusic, D ;
Nowitz, LA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :325-333
[5]  
Conder M., 2002, J COMB MATH COMB COM, V40, P255
[6]   REGULAR GROUPS OF AUTOMORPHISMS OF CUBIC GRAPHS [J].
DJOKOVIC, DZ ;
MILLER, GL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 29 (02) :195-230
[7]   Semiregular automorphisms of vertex-transitive graphs of certain valencies [J].
Dobson, Edward ;
Malnic, Aleksander ;
Marusic, Dragan ;
Nowitz, Lewis A. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) :371-380
[8]   Minimal normal subgroups of transitive permutation groups of square-free degree [J].
Dobson, Edward ;
Malnic, Aleksander ;
Marusic, Dragan ;
Nowitz, Lewis A. .
DISCRETE MATHEMATICS, 2007, 307 (3-5) :373-385
[9]   ON SEMIREGULAR ELEMENTS OF SOLVABLE GROUPS [J].
Dobson, Edward ;
Marusic, Dragan .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (04) :1413-1426
[10]   Graphical Frobenius representations [J].
Doyle, John Kevin ;
Tucker, Thomas W. ;
Watkins, Mark E. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2018, 48 (03) :405-428