Photocathode engineering for efficient photoelectrochemical CO2 reduction

被引:78
作者
Ding, P. [1 ,2 ,3 ]
Jiang, T. [1 ,2 ,3 ]
Han, N. [1 ]
Li, Y. [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
[2] Tech Univ Munich, Walter Schottky Inst, Coulombwall 4, D-85748 Garching, Germany
[3] Tech Univ Munich, Phys Dept, Coulombwall 4, D-85748 Garching, Germany
关键词
Photoelectrochemical reduction of CO2; Photocathodes; Light harvest; Charge dynamics; Surface catalytic reaction; HYBRID PHOTOELECTROCATALYTIC INTERFACE; CARBON-DIOXIDE; COPPER-OXIDE; NANOWIRE PHOTOELECTRODES; HYDROGEN-PRODUCTION; WATER; SILICON; FORMATE; CONVERSION; CATALYSTS;
D O I
10.1016/j.mtnano.2020.100077
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photoelectrochemical (PEC) CO2 reduction integrates the merits of photocatalysis and electrolysis and represents an effective route to realize the solar-driven production of chemical fuels from CO2 reduction. Over recent years, tremendous efforts have been devoted to the design and engineering of photocathodes so as to improve their PEC performances with many exciting progresses. Herein, we provide a review on the latest advances in this field. We first introduce the fundamental working principle, current challenges, and performance figures of merits of PEC CO2 reduction. It is then followed by detailed discussion about a number of strategies for photocathode engineering aiming to promoting the three key reaction steps: light absorption, charge separation/transport, and surface catalytic reaction. Finally, we present a brief conclusion and perspective about possible future research directions of this field. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 82 条
[1]   Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode [J].
AlOtaibi, B. ;
Nguyen, H. P. T. ;
Zhao, S. ;
Kibria, M. G. ;
Fan, S. ;
Mi, Z. .
NANO LETTERS, 2013, 13 (09) :4356-4361
[2]   The boundless carbon cycle [J].
Battin, Tom J. ;
Luyssaert, Sebastiaan ;
Kaplan, Louis A. ;
Aufdenkampe, Anthony K. ;
Richter, Andreas ;
Tranvik, Lars J. .
NATURE GEOSCIENCE, 2009, 2 (09) :598-600
[3]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[4]   Towards Solar Fuels from Water and CO2 [J].
Centi, Gabriele ;
Perathoner, Siglinda .
CHEMSUSCHEM, 2010, 3 (02) :195-208
[5]  
Cha HG, 2015, NAT CHEM, V7, P328, DOI [10.1038/NCHEM.2194, 10.1038/nchem.2194]
[6]   The Development of Cocatalysts for Photoelectrochemical CO2 Reduction [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Yang, Piaoping ;
Zhang, Gong ;
Gong, Jinlong .
ADVANCED MATERIALS, 2019, 31 (31)
[7]   Sn-Coupled p-Si Nanowire Arrays for Solar Formate Production from CO2 [J].
Choi, Sung Kyu ;
Kang, Unseock ;
Lee, Seunghoon ;
Ham, Dong Jin ;
Ji, Sang Min ;
Park, Hyunwoong .
ADVANCED ENERGY MATERIALS, 2014, 4 (11)
[8]   Photoelectrochemical CO2 Reduction into Syngas with the Metal/Oxide Interface [J].
Chu, Sheng ;
Ou, Pengfei ;
Ghamari, Pegah ;
Vanka, Srinivas ;
Zhou, Baowen ;
Shih, Ishiang ;
Song, Jun ;
Mi, Zetian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (25) :7869-7877
[9]   Tunable Syngas Production from CO2 and H2O in an Aqueous Photoelectrochemical Cell [J].
Chu, Sheng ;
Fan, Shizhao ;
Wang, Yongjie ;
Rossouw, David ;
Wang, Yichen ;
Botton, Gianluigi A. ;
Mi, Zetian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (46) :14260-14264
[10]   Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity [J].
Clark, Ezra L. ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (44) :15848-15857