A note on cyclic codes over GR(p2, m) of length pk

被引:24
作者
Kiah, Han Mao [1 ]
Leung, Ka Hin [2 ]
Ling, San [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
[2] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
基金
新加坡国家研究基金会;
关键词
Self-dual; Cyclic codes; Galois rings; Genocchi numbers; EVEN LENGTH; Z(4);
D O I
10.1007/s10623-011-9538-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The number of self-dual cyclic codes of length p (k) over GR(p (2), m) is determined by the nullity of a certain matrix M(p (k) , i (1)). With the aid of Genocchi numbers, we determine the nullity of M(p (k) , i (1)) and hence determine completely the number of such codes.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 8 条
[1]   On the generators of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Oehmke, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) :2126-2133
[2]   Cyclic codes over Z4 of oddly even length [J].
Blackford, T .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) :27-46
[3]  
Dougherty ST, 2006, DESIGN CODE CRYPTOGR, V39, P127, DOI 10.1007/s10623-005-2773-x
[4]   On modular cyclic codes [J].
Dougherty, Steven T. ;
Park, Young Ho .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) :31-57
[5]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[6]   Cyclic codes over GR(p2, m) of length pk [J].
Kiah, Han Mao ;
Leung, Ka Hin ;
Ling, San .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) :834-846
[7]   A note on cyclic codes over GR(p2,m) of length pk [J].
Sobhani, R. ;
Esmaeili, M. .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (03) :387-391
[8]  
Weisstein E.W., GENOCCHI NUMBER MATH