Controlled Motion of a Spherical Robot with Feedback. I

被引:20
作者
Ivanova, Tatyana B. [1 ]
Kilin, Alexander A. [2 ]
Pivovarova, Elena N. [1 ]
机构
[1] Udmurt State Univ, Izhevsk, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
基金
俄罗斯科学基金会;
关键词
Spherical robot; Nonholonomic constraint; Control; Feedback; ROLLING ROBOT; DYNAMICS; STABILIZATION; DRIVEN; SYSTEMS;
D O I
10.1007/s10883-017-9387-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop a model of a controlled spherical robot with an axisymmetric pendulum-type actuator with a feedback system suppressing the pendulum's oscillations at the final stage of motion. According to the proposed approach, the feedback depends on phase variables (the current position and velocities) and does not depend on the type of trajectory. We present integrals of motion and partial solutions, analyze their stability, and give examples of computer simulation of motion using feedback to illustrate compensation of the pendulum's oscillations.
引用
收藏
页码:497 / 510
页数:14
相关论文
共 42 条
[1]  
[Anonymous], VESTNIK UDMURTSKOGO
[2]   A motion control for a spherical robot with pendulum drive [J].
Balandin, D. V. ;
Komarov, M. A. ;
Osipov, G. V. .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2013, 52 (04) :650-663
[3]   The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside [J].
Bizyaev, Ivan A. ;
Borisov, Alexey V. ;
Mamaev, Ivan S. .
REGULAR & CHAOTIC DYNAMICS, 2014, 19 (02) :198-213
[4]  
Bloch A., 2015, NONHOLONOMIC MECH CO
[5]  
Bloch AM, 1997, IEEE DECIS CONTR P, P2356, DOI 10.1109/CDC.1997.657135
[6]   STABILIZATION OF RIGID BODY DYNAMICS BY INTERNAL AND EXTERNAL TORQUES [J].
BLOCH, AM ;
KRISHNAPRASAD, PS ;
MARSDEN, JE ;
DEALVAREZ, GS .
AUTOMATICA, 1992, 28 (04) :745-756
[7]   CONTROL AND STABILIZATION OF NONHOLONOMIC DYNAMIC-SYSTEMS [J].
BLOCH, AM ;
REYHANOGLU, M ;
MCCLAMROCH, NH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (11) :1746-1757
[8]  
Borisov A. V., 2005, Rigid Body Dynamics. Hamiltonian Methods, Integrability
[9]  
Borisov A.V., 2013, MOBILE ROBOTS ROBOT
[10]   How to control the Chaplygin ball using rotors. II [J].
Borisov, Alexey V. ;
Kilin, Alexander A. ;
Mamaev, Ivan S. .
REGULAR & CHAOTIC DYNAMICS, 2013, 18 (1-2) :144-158