The phosphatase inhibitor, okadaic acid, strongly protects primary rat cortical neurons from lethal oxygen-glucose deprivation

被引:13
|
作者
Atkinson, Trevor [1 ]
Whitfield, James [1 ]
Chakravarthy, Balu [1 ]
机构
[1] Natl Res Council Canada, Inst Biol Sci, Mol Signalling Group, Ottawa, ON K1A 0R6, Canada
关键词
Okadaic acid; IGF-1; bFGF; Neuroprotection; Oxygen-glucose deprivation; Cortical neuron; GROWTH-FACTOR-I; PHOSPHATIDYLINOSITOL; 3-KINASE; HIPPOCAMPAL-NEURONS; NEUROTROPHIC FACTOR; GENE-EXPRESSION; KINASE; ACTIVATION; APOPTOSIS; NEUROPROTECTION; PATHWAYS;
D O I
10.1016/j.bbrc.2008.11.036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The protein kinase-mediated actions of peptide growth factors such as IGF-1 and bFGF protect cultured neurons from being killed by the oxygen and glucose deprivations (OGD) that prevail in the 'stroked brain'. Here, we show that neuroprotection by IGF-1 is mediated by PI-3K/Akt, whereas that of bFGF is mediated by MAPK. IGF-1 and bFGF together did not further increase protection suggesting a downstream convergence of their pathways. Since protein kinases mediated the protection, a phosphatase inhibitor such as okadaic acid (OA) might be as protective as the growth factors against OGD. Here, we show that OA is actually a Much more effective protector. It increased the phosphorylation of both PI-3K/Akt and MAPK, and stimulated new protein synthesis. OA also acted independently of the CREB activation and FKHRL1 and GSK-3 inactivation which have been implicated in IGF-1 actions. Crown Copyright (C) 2008 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 398
页数:5
相关论文
共 50 条
  • [31] Astrocyte Autophagy Flux Protects Neurons Against Oxygen-Glucose Deprivation and Ischemic/Reperfusion Injury
    Liu, Xue
    Tian, Fengfeng
    Wang, Shiquan
    Wang, Feng
    Xiong, Lize
    REJUVENATION RESEARCH, 2018, 21 (05) : 405 - 415
  • [32] Angiotensin II protects cortical neurons against oxygen-glucose deprivation-induced injury in vitro
    Tang, Mingtan
    Zhao, Li
    Chen, Yanqing
    Wang, Lixiang
    Zhang, Xiumei
    BIOMEDICAL REPORTS, 2014, 2 (01) : 112 - 116
  • [33] Hyperoside protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via nitric oxide signal pathway
    Liu, Rui-Li
    Xiong, Qiu-Ju
    Shu, Qing
    Wu, Wen-Ning
    Cheng, Jin
    Fu, Hui
    Wang, Fang
    Chen, Jian-Guo
    Hu, Zhuang-Li
    BRAIN RESEARCH, 2012, 1469 : 164 - 173
  • [34] Intrinsic Effects of Gold Nanoparticles on Oxygen-Glucose Deprivation/Reperfusion Injury in Rat Cortical Neurons
    Zheng, Yafei
    Wu, Yuyun
    Liu, Ying
    Guo, Zhirui
    Bai, Tingting
    Zhou, Ping
    Wu, Jin
    Yang, Qin
    Liu, Zhengxia
    Lu, Xiang
    NEUROCHEMICAL RESEARCH, 2019, 44 (07) : 1549 - 1566
  • [35] Metformin limits apoptosis in primary rat cortical astrocytes subjected to oxygen and glucose deprivation
    Gabryel, Bozena
    Liber, Sebastian
    FOLIA NEUROPATHOLOGICA, 2018, 56 (04) : 328 - 336
  • [36] Oxygen-glucose deprivation preconditioning protects neurons against oxygen-glucose deprivation/reperfusion induced injury via bone morphogenetic protein-7 mediated ERK, p38 and Smad signalling pathways
    Guan, Junhong
    Du, Shaonan
    Lv, Tao
    Qu, Shengtao
    Fu, Qiang
    Yuan, Ye
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2016, 43 (01) : 125 - 134
  • [37] Proteolysis of oxidized proteins after oxygen-glucose deprivation in rat cortical neurons is mediated by the proteasome
    Weih, M
    Schmitt, M
    Gieche, J
    Harms, C
    Ruscher, K
    Dirnagl, U
    Grune, T
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (09) : 1090 - 1096
  • [38] Human endothelial progenitor cells rescue cortical neurons from oxygen-glucose deprivation induced death
    Bacigaluppi, Susanna
    Donzelli, Elisabetta
    De Cristofaro, Valentina
    Bragazzi, Nicola Luigi
    D'Amico, Giovanna
    Scuteri, Arianna
    Tredici, Giovanni
    NEUROSCIENCE LETTERS, 2016, 631 : 50 - 55
  • [39] Sevoflurane Post-conditioning Protects Primary Rat Cortical Neurons Against Oxygen-Glucose Deprivation/Resuscitation: Roles of Extracellular Signal-Regulated Kinase 1/2 and Bid, Bim, Puma
    Zhang, Limin
    Zhao, Xiaochun
    Jiang, Xiaojing
    NEUROCHEMICAL RESEARCH, 2015, 40 (08) : 1609 - 1619
  • [40] RIP1 mediates the protection of geldanamycin on neuronal injury induced by oxygen-glucose deprivation combined with zVAD in primary cortical neurons
    Chen, Wei-Wei
    Yu, Hailong
    Fan, Hong-Bin
    Zhang, Cui-Cui
    Zhang, Min
    Zhang, Caiyi
    Cheng, Yanbo
    Kong, Jiming
    Liu, Chun-Feng
    Geng, Deqin
    Xu, Xingshun
    JOURNAL OF NEUROCHEMISTRY, 2012, 120 (01) : 70 - 77