The phosphatase inhibitor, okadaic acid, strongly protects primary rat cortical neurons from lethal oxygen-glucose deprivation

被引:13
|
作者
Atkinson, Trevor [1 ]
Whitfield, James [1 ]
Chakravarthy, Balu [1 ]
机构
[1] Natl Res Council Canada, Inst Biol Sci, Mol Signalling Group, Ottawa, ON K1A 0R6, Canada
关键词
Okadaic acid; IGF-1; bFGF; Neuroprotection; Oxygen-glucose deprivation; Cortical neuron; GROWTH-FACTOR-I; PHOSPHATIDYLINOSITOL; 3-KINASE; HIPPOCAMPAL-NEURONS; NEUROTROPHIC FACTOR; GENE-EXPRESSION; KINASE; ACTIVATION; APOPTOSIS; NEUROPROTECTION; PATHWAYS;
D O I
10.1016/j.bbrc.2008.11.036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The protein kinase-mediated actions of peptide growth factors such as IGF-1 and bFGF protect cultured neurons from being killed by the oxygen and glucose deprivations (OGD) that prevail in the 'stroked brain'. Here, we show that neuroprotection by IGF-1 is mediated by PI-3K/Akt, whereas that of bFGF is mediated by MAPK. IGF-1 and bFGF together did not further increase protection suggesting a downstream convergence of their pathways. Since protein kinases mediated the protection, a phosphatase inhibitor such as okadaic acid (OA) might be as protective as the growth factors against OGD. Here, we show that OA is actually a Much more effective protector. It increased the phosphorylation of both PI-3K/Akt and MAPK, and stimulated new protein synthesis. OA also acted independently of the CREB activation and FKHRL1 and GSK-3 inactivation which have been implicated in IGF-1 actions. Crown Copyright (C) 2008 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 398
页数:5
相关论文
共 50 条
  • [1] Mulberroside a protects against ischemic impairment in primary culture of rat cortical neurons after oxygen-glucose deprivation followed by reperfusion
    Wang, Cai-Ping
    Zhang, Lu-Zhong
    Li, Gui-Cai
    Shi, Yun-wei
    Li, Jian-Long
    Zhang, Xiao-Chuan
    Wang, Zhi-Wei
    Ding, Fei
    Liang, Xin-Miao
    JOURNAL OF NEUROSCIENCE RESEARCH, 2014, 92 (07) : 944 - 954
  • [2] Bax inhibitor-1 protects neurons from oxygen-glucose deprivation
    Christoph P. Dohm
    Sandra Siedenberg
    Jan Liman
    Alessandro Esposito
    Fred S. Wouters
    John C. Reed
    Mathias Bähr
    Pawel Kermer
    Journal of Molecular Neuroscience, 2006, 29 : 1 - 8
  • [3] Bax inhibitor-1 protects neurons from oxygen-glucose deprivation
    Dohm, Christoph P.
    Siedenberg, Sandra
    Liman, Jan
    Esposito, Alessandro
    Wouters, Fred S.
    Reed, John C.
    Baehr, Mathias
    Kermer, Pawel
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2006, 29 (01) : 1 - 8
  • [4] A natural diarylheptanoid protects cortical neurons against oxygen-glucose deprivation-induced autophagy and apoptosis
    Shi, Qiaoyun
    Zhang, Qinghua
    Peng, Yinghui
    Zhang, Xiaoqi
    Wang, Ying
    Shi, Lei
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2019, 71 (07) : 1110 - 1118
  • [5] Sulforaphane protects primary cultures of cortical neurons against injury induced by oxygen-glucose deprivation/reoxygenation via antiapoptosis
    Wu, Xuemei
    Zhao, Jing
    Yu, Shanshan
    Chen, Yanlin
    Wu, Jingxian
    Zhao, Yong
    NEUROSCIENCE BULLETIN, 2012, 28 (05) : 509 - 516
  • [6] Sulforaphane protects primary cultures of cortical neurons against injury induced by oxygen-glucose deprivation/reoxygenation via antiapoptosis
    Xuemei Wu
    Jing Zhao
    Shanshan Yu
    Yanlin Chen
    Jingxian Wu
    Yong Zhao
    Neuroscience Bulletin, 2012, 28 : 509 - 516
  • [7] Daphnetin protects hippocampal neurons from oxygen-glucose deprivation-induced injury
    Zhi, Jin
    Duan, Bin
    Pei, Jiwen
    Wu, Songdi
    Wei, Junli
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 4132 - 4139
  • [8] Harpagide from Scrophularia protects rat cortical neurons from oxygen-glucose deprivation and reoxygenation-induced injury by decreasing endoplasmic reticulum stress
    Wang, Ke
    Lou, Yeliang
    Xu, Huang
    Zhong, Xiaoming
    Huang, Zhen
    JOURNAL OF ETHNOPHARMACOLOGY, 2020, 253
  • [10] DESIPRAMINE, FLUOXETINE AND TRANYLCYPROMINE HAVE DIFFERENT EFFECTS ON APOPTOSIS INDUCED IN RAT CORTICAL NEURONS BY OXYGEN-GLUCOSE DEPRIVATION
    Pudelko, Anna
    Obuchowicz, Ewa
    ACTA POLONIAE PHARMACEUTICA, 2015, 72 (06): : 1151 - 1161