High order methods on Shishkin meshes for singular perturbation problems of convection-diffusion type

被引:31
作者
Clavero, C [1 ]
Gracia, JL [1 ]
Lisbona, F [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
关键词
singular perturbation; uniform convergence; Shishkin mesh; high order;
D O I
10.1023/A:1019150606200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct and analyze two compact monotone finite difference methods to solve singularly perturbed problems of convection-diffusion type. They are defined as HODIE methods of order two and three, i.e., the coefficients are determined by imposing that the local error be null on a polynomial space. For arbitrary meshes, these methods are not adequate for singularly perturbed problems, but using a Shishkin mesh we can prove that the methods are uniformly convergent of order two and three except for a logarithmic factor. Numerical examples support the theoretical results.
引用
收藏
页码:73 / 97
页数:25
相关论文
共 22 条
[1]  
Andreyev VB, 1996, COMP MATH MATH PHYS+, V36, P1065
[2]  
[Anonymous], NUMER METH PART D E
[3]  
[Anonymous], ZB RAD PRIR MAT FA M
[4]  
BAKHVALOV AS, 1969, USSR COMP MATH MATH, V9, P139
[5]   UNIFORM-CONVERGENCE OF ARBITRARY ORDER ON NONUNIFORM MESHES FOR A SINGULARLY PERTURBED BOUNDARY-VALUE PROBLEM [J].
CLAVERO, C ;
LISBONA, F ;
MILLER, JJH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 59 (02) :155-171
[6]  
GARTLAND EC, 1987, MATH COMPUT, V48, P551, DOI 10.1090/S0025-5718-1987-0878690-0
[7]  
GARTLAND EC, 1988, MATH COMPUT, V51, P631, DOI 10.1090/S0025-5718-1988-0935072-1
[8]  
HERCEG D, 1990, NUMER MATH, V56, P675, DOI 10.1007/BF01405196
[9]  
KELLOGG RB, 1978, MATH COMPUT, V32, P1025, DOI 10.1090/S0025-5718-1978-0483484-9
[10]  
Kopteva NV, 1996, DIFF EQUAT+, V32, P958