Vanishing of the costate in pontryagin's maximum principle and singular time optimal controls

被引:4
作者
Fattorini, HO [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
linear distributed parameter systems; boundary control systems; optimal controls;
D O I
10.1007/s00028-003-0126-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide examples of time and norm optimal controls that satisfy Pontryagin's maximum principle in an interval 0 less than or equal to t less than or equal to T but with a costate that vanishes in 0 less than or equal to t less than or equal to T - delta with delta < T. A refinement of this construction produces time optimal controls which do not satisfy the maximum principle, even in weak form. On the positive side, we show that when we drive to zero the costate is nonzero in the whole control interval.
引用
收藏
页码:99 / 123
页数:25
相关论文
共 20 条
[1]   SOME REMARKS ON BANACH-SPACES IN WHICH MARTINGALE DIFFERENCE-SEQUENCES ARE UNCONDITIONAL [J].
BOURGAIN, J .
ARKIV FOR MATEMATIK, 1983, 21 (02) :163-168
[2]  
Burkholder D.L., 1983, Wadsworth Math. Ser., VI, P270
[3]  
De Simon L., 1964, Rend. Semin. Mat. Univ. Padova, V34, P205
[4]   ON THE CLOSEDNESS OF THE SUM OF 2 CLOSED OPERATORS [J].
DORE, G ;
VENNI, A .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (02) :189-201
[5]  
Dore G., 2000, ADV DIFFERENTIAL EQU, V5, P293
[6]  
Fattorini, 1999, INFINITE DIMENSIONAL, V62
[7]  
Fattorini H.O., 2001, CUBO, V3, P147
[8]   The maximum principle in infinite dimension [J].
Fattorini, HO .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (03) :557-574
[9]   TIME-OPTIMAL CONTROL PROBLEM IN BANACH-SPACES [J].
FATTORINI, HO .
APPLIED MATHEMATICS AND OPTIMIZATION, 1974, 1 (02) :163-188
[10]   Time optimality and the maximum principle in infinite dimension [J].
Fattorini, HO .
OPTIMIZATION, 2001, 50 (5-6) :361-385