Detecting Anomalies by using Self-Organizing Maps in Industrial Environments

被引:6
|
作者
Hormann, Ricardo [1 ]
Fischer, Eric [1 ]
机构
[1] Volkswagen AG, Shopfloor IT, Wolfsburg, Germany
来源
PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP) | 2019年
关键词
Anomaly Detection; Self-Organizing Maps; Profinet;
D O I
10.5220/0007364803360344
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting anomalies caused by intruders are a big challenge in industrial environments due to the complex environmental interdependencies and proprietary fieldbus protocols. In this paper, we proposed a network-based method for detecting anomalies by using unsupervised artificial neural networks called Self-Organizing Maps (SOMs). Therefore, we published an algorithm which identifies clusters and cluster centroids in SOMs to gain knowledge about the underlying data structure. In the training phase we created two neural networks, one for clustering the network data and the other one for finding the cluster centroids. In the operating phase our approach is able to detect anomalies by comparing new data samples with the first trained SOM model. We used a confidence interval to decide if the sample is too far from its best matching unit. A novel additional confidence interval for the second SOM is proposed to minimize false positives which have been a major drawback of machine learning methods in anomaly detection. We implemented our approach in a robot cell and infiltrated the network like an intruder would do to evaluate our method. As a result, we significantly reduced the false positive rate to 0.07% using the second interval while providing an accuracy of 99% for the detection of network attacks.
引用
收藏
页码:336 / 344
页数:9
相关论文
共 50 条
  • [21] Visualizing Syscalls using Self-organizing Maps for System Intrusion Detection
    Landauer, Max
    Skopik, Florian
    Wurzenberger, Markus
    Hotwagner, Wolfgang
    Rauber, Andreas
    ICISSP: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2020, : 349 - 360
  • [22] Using Self-Organizing Maps for Comparing Students' Academic Performance in Online and Traditional Learning Environments
    Onet-Marian, Zsuzsanna
    Czibula, Gabriela
    Maier, Mariana
    STUDIES IN INFORMATICS AND CONTROL, 2021, 30 (04): : 31 - 42
  • [23] A Clustering Method Using Hierarchical Self-Organizing Maps
    Masahiro Endo
    Masahiro Ueno
    Takaya Tanabe
    Journal of VLSI signal processing systems for signal, image and video technology, 2002, 32 : 105 - 118
  • [24] Initialization Issues in Self-organizing Maps
    Valova, Iren
    Georgiev, George
    Gueorguieva, Natacha
    Olson, Jacob
    COMPLEX ADAPTIVE SYSTEMS: EMERGING TECHNOLOGIES FOR EVOLVING SYSTEMS: SOCIO-TECHNICAL, CYBER AND BIG DATA, 2013, 20 : 52 - 57
  • [25] Fast Self-Organizing Maps Training
    Giobergia, Flavio
    Baralis, Elena
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2257 - 2266
  • [26] Fault tolerance of self-organizing maps
    Bernard Girau
    Cesar Torres-Huitzil
    Neural Computing and Applications, 2020, 32 : 17977 - 17993
  • [27] Pairwise Elastic Self-Organizing Maps
    Hartono, Pitoyo
    Take, Yuto
    2017 12TH INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION (WSOM), 2017, : 50 - 56
  • [28] Dynamic Formation of Self-Organizing Maps
    Fix, Jeremy
    ADVANCES IN SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, 2014, 295 : 25 - 34
  • [29] Self-Organizing Maps with supervised layer
    Platon, Ludovic
    Zehraoui, Farida
    Tahi, Fariza
    2017 12TH INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION (WSOM), 2017, : 161 - 168
  • [30] Fault tolerance of self-organizing maps
    Girau, Bernard
    Torres-Huitzil, Cesar
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (24) : 17977 - 17993