Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation

被引:47
作者
Albergel, Clement [1 ]
Dutra, Emanuel [2 ]
Bonan, Bertrand [1 ]
Zheng, Yongjun [1 ]
Munier, Simon [1 ]
Balsamo, Gianpaolo [3 ]
de Rosnay, Patricia [3 ]
Munoz-Sabater, Joaquin [3 ]
Calvet, Jean-Christophe [1 ]
机构
[1] Univ Toulouse, CNRS, Meteo France, CNRM, F-31057 Toulouse, France
[2] Univ Lisbon, IDL, Fac Sci, P-1749016 Lisbon, Portugal
[3] European Ctr Medium Range Weather Forecasts ECMWF, Reading RG2 9AX, Berks, England
关键词
land surface modeling; data assimilation; leaf area index; surface soil moisture; summer; 2018; heatwave; LAND DATA ASSIMILATION; SURFACE SOIL-MOISTURE; LEAF-AREA INDEX; ESSENTIAL CLIMATE VARIABLES; ISBA-A-GS; HYDROLOGICAL MODEL; ERS SCATTEROMETER; NEAR-SURFACE; SNOW COVER; WATER;
D O I
10.3390/rs11050520
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aims to assess the potential of the LDAS-Monde platform, a land data assimilation system developed by Meteo-France, to monitor the impact on vegetation state of the 2018 summer heatwave over Western Europe. The LDAS-Monde is driven by ECMWF's (i) ERA5 reanalysis, and (ii) the Integrated Forecasting System High Resolution operational analysis (IFS-HRES), used in conjunction with the assimilation of Copernicus Global Land Service (CGLS) satellite-derived products, namely the Surface Soil Moisture (SSM) and the Leaf Area Index (LAI). The study of long time series of satellite derived CGLS LAI (2000-2018) and SSM (2008-2018) highlights marked negative anomalies for July 2018 affecting large areas of northwestern Europe and reflects the impact of the heatwave. Such large anomalies spreading over a large part of the domain of interest have never been observed in the LAI product over this 19-year period. LDAS-Monde land surface reanalyses were produced at spatial resolutions of 0.25 degrees x 0.25 degrees (January 2008 to October 2018) and 0.10 degrees x 0.10 degrees (April 2016 to December 2018). Both configurations of LDAS-Monde forced by either ERA5 or HRES capture well the vegetation state in general and for this specific event, with HRES configuration exhibiting better monitoring skills than ERA5 configuration. The consistency of ERA5- and IFS HRES-driven simulations over the common period (April 2016 to October 2018) allowed to disentangle and appreciate the origin of improvements observed between the ERA5 and HRES. Another experiment, down-scaling ERA5 to HRES spatial resolutions, was performed. Results suggest that land surface spatial resolution is key (e.g., associated to a better representation of the land cover, topography) and using HRES forcing still enhances the skill. While there are advantages in using HRES, there is added value in down-scaling ERA5, which can provide consistent, long term, high resolution land reanalysis. If the improvement from LDAS-Monde analysis on control variables (soil moisture from layers 2 to 8 of the model representing the first meter of soil and LAI) from the assimilation of SSM and LAI was expected, other model variables benefit from the assimilation through biophysical processes and feedback in the model. Finally, we also found added value of initializing 8-day land surface HRES driven forecasts from LDAS-Monde analysis when compared with model-only initial conditions.
引用
收藏
页数:22
相关论文
共 80 条
[1]   From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations [J].
Albergel, C. ;
Ruediger, C. ;
Pellarin, T. ;
Calvet, J. -C. ;
Fritz, N. ;
Froissard, F. ;
Suquia, D. ;
Petitpa, A. ;
Piguet, B. ;
Martin, E. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2008, 12 (06) :1323-1337
[2]   LDAS-Monde Sequential Assimilation of Satellite Derived Observations Applied to the Contiguous US: An ERA-5 Driven Reanalysis of the Land Surface Variables [J].
Albergel, Clement ;
Munier, Simon ;
Bocher, Aymeric ;
Bonan, Bertrand ;
Zheng, Yongjun ;
Draper, Clara ;
Leroux, Delphine J. ;
Calvet, Jean-Christophe .
REMOTE SENSING, 2018, 10 (10)
[3]   Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area [J].
Albergel, Clement ;
Munier, Simon ;
Leroux, Delphine Jennifer ;
Dewaele, Helene ;
Fairbairn, David ;
Barbu, Alina Lavinia ;
Gelati, Emiliano ;
Dorigo, Wouter ;
Faroux, Stephanie ;
Meurey, Catherine ;
Le Moigne, Patrick ;
Decharme, Bertrand ;
Mahfouf, Jean-Francois ;
Calvet, Jean-Christophe .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (10) :3889-3912
[4]   ERA-Interim/Land: a global land surface reanalysis data set [J].
Balsamo, G. ;
Albergel, C. ;
Beljaars, A. ;
Boussetta, S. ;
Brun, E. ;
Cloke, H. ;
Dee, D. ;
Dutra, E. ;
Munoz-Sabater, J. ;
Pappenberger, F. ;
de Rosnay, P. ;
Stockdale, T. ;
Vitart, F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (01) :389-407
[5]   Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review [J].
Balsamo, Gianpaolo ;
Agusti-Parareda, Anna ;
Albergel, Clement ;
Arduini, Gabriele ;
Beljaars, Anton ;
Bidlot, Jean ;
Bousserez, Nicolas ;
Boussetta, Souhail ;
Brown, Andy ;
Buizza, Roberto ;
Buontempo, Carlo ;
Chevallier, Frederic ;
Choulga, Margarita ;
Cloke, Hannah ;
Cronin, Meghan F. ;
Dahoui, Mohamed ;
De Rosnay, Patricia ;
Dirmeyer, Paul A. ;
Drusch, Matthias ;
Dutra, Emanuel ;
Ek, Michael B. ;
Gentine, Pierre ;
Hewitt, Helene ;
Keeley, Sarah P. E. ;
Kerr, Yann ;
Kumar, Sujay ;
Lupu, Cristina ;
Mahfouf, Jean-Francois ;
McNorton, Joe ;
Mecklenburg, Susanne ;
Mogensen, Kristian ;
Munoz-Sabater, Joaquin ;
Orth, Rene ;
Rabier, Florence ;
Reichle, Rolf ;
Ruston, Ben ;
Pappenberger, Florian ;
Sandu, Irina ;
Seneviratne, Sonia I. ;
Tietsche, Steffen ;
Trigo, Isabel F. ;
Uijlenhoet, Remko ;
Wedi, Nils ;
Woolway, R. Iestyn ;
Zeng, Xubin .
REMOTE SENSING, 2018, 10 (12)
[6]  
Bamzai AS, 1999, J CLIMATE, V12, P3117, DOI 10.1175/1520-0442(1999)012<3117:RBESCS>2.0.CO
[7]  
2
[8]   Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data assimilation application over France [J].
Barbu, A. L. ;
Calvet, J. -C. ;
Mahfouf, J. -F. ;
Lafont, S. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2014, 18 (01) :173-192
[9]   Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: grassland case study [J].
Barbu, A. L. ;
Calvet, J. -C. ;
Mahfouf, J. -F. ;
Albergel, C. ;
Lafont, S. .
BIOGEOSCIENCES, 2011, 8 (07) :1971-1986
[10]   GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production [J].
Baret, F. ;
Weiss, M. ;
Lacaze, R. ;
Camacho, F. ;
Makhmara, H. ;
Pacholcyzk, P. ;
Smets, B. .
REMOTE SENSING OF ENVIRONMENT, 2013, 137 :299-309