Comparison of temperature dependent deformation mechanisms of 8YSZ thermal barrier coatings prepared by air-plasma-spray and D-gun thermal spray: An in situ study

被引:21
作者
Cho, Jaehun [1 ]
Li, Jin [1 ]
Shang, Z. [1 ]
Lopez, Jack M. [2 ]
Jarosinski, William J. [2 ]
Gentleman, M. M. [2 ]
Viswanathan, Vaishak [2 ]
Xue, S. [1 ]
Wang, H. [1 ,3 ]
Zhang, X. [1 ]
机构
[1] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[2] Praxair Surface Technol, Indianapolis, IN 46222 USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
Thermal barrier coating; Yttria stabilized zirconia; Air plasma spray; Dense vertically cracked; In situ microcompression; YTTRIA-STABILIZED ZIRCONIA; TETRAGONAL ZIRCONIA; CONDUCTIVITY; CERAMICS; TRANSFORMATION; DIFFUSIVITY; TOUGHNESS; STRENGTH; STRESS; DESIGN;
D O I
10.1016/j.jeurceramsoc.2019.04.020
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
8 weight percent yttria stabilized zirconia (8YSZ) has gained widespread use in thermal barrier coatings for the hot sections of aero and power generation turbines due to its superb thermal and mechanical properties. In this study, in situ microcompression tests were conducted to evaluate the mechanical performance of 8YSZ coatings with dense vertically cracked (DVC) microstructures produced by detonation gun thermal spray to those deposited by air plasma spray (APS). At room temperature, the APS coatings showed high variability in fracture strength resulting from cracks and pores in the coating. DVC coatings, conversely, exhibited fracture strengths ranging from 3.9 to 6.6 GPa and less variability in fracture strength attributed to the relatively dense and less defective microstructure. At 500 degrees C, both coatings showed better consistency of fracture strength and enhanced deformability owing to deformable pores, ferroelastic domain switching, and dislocation activities.
引用
收藏
页码:3120 / 3128
页数:9
相关论文
共 57 条
[1]  
Abrams H., 1971, Metallography, V4, P59, DOI 10.1016/0026-0800(71)90005-X
[2]   DIFFUSION-ACCOMMODATED FLOW AND SUPERPLASTICITY [J].
ASHBY, MF ;
VERRALL, RA .
ACTA METALLURGICA, 1973, 21 (02) :149-163
[3]   Ferroelastic and plastic deformation of t′-zirconia single crystals [J].
Baither, D ;
Bartsch, M ;
Baufeld, B ;
Tikhonovsky, A ;
Foitzik, A ;
Rühle, M ;
Messerschmidt, U .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2001, 84 (08) :1755-1762
[4]   Flow processes in superplastic yttria-stabilized zirconia: A Deformation Limit Diagram [J].
Balasubramanian, N ;
Langdon, TG .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 409 (1-2) :46-51
[5]   Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content [J].
Bravo-Leon, A ;
Morikawa, Y ;
Kawahara, M ;
Mayo, MJ .
ACTA MATERIALIA, 2002, 50 (18) :4555-4562
[6]   TWINNED CRYSTALS [J].
CAHN, RW .
ADVANCES IN PHYSICS, 1954, 3 (12) :363-445
[7]   Size and plasticity effects in zirconia micropillars compression [J].
Camposilvan, Erik ;
Anglada, Marc .
ACTA MATERIALIA, 2016, 103 :882-892
[8]   FERROELASTIC DOMAIN SWITCHING IN TETRAGONAL ZIRCONIA SINGLE-CRYSTALS MICROSTRUCTURAL ASPECTS [J].
CHAN, CJ ;
LANGE, FF ;
RUHLE, M ;
JUE, JF ;
VIRKAR, AV .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (04) :807-813
[9]   Experimental evidence for diffusion creep in the superplastic 3 mol% yttria-stabilized tetragonal zirconia [J].
Charit, I ;
Chokshi, AH .
ACTA MATERIALIA, 2001, 49 (12) :2239-2249
[10]   Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals [J].
Chien, FR ;
Ubic, FJ ;
Prakash, V ;
Heuer, AH .
ACTA MATERIALIA, 1998, 46 (06) :2151-2171