Globally optimal nonlinear feedback: Application to nonisothermal CSTR control

被引:2
作者
Chen, Y
Manousiouthakis, V [1 ]
Edgar, T
机构
[1] Univ Calif Los Angeles, Dept Chem Engn, Los Angeles, CA 90095 USA
[2] Univ Texas, Dept Chem Engn, Austin, TX USA
关键词
nonlinear; optimal control; LQR control; approximate; constraints;
D O I
10.1080/009864490949107
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Approximations of the globally optimal nonlinear quadratic regulator (NQR) strategy are employed to control the unstable steady state of a continuous stirred tank reactor. It is shown that the proposed approximate NQR controllers can be uniquely determined through solution of Riccati and linear matrix equations and can deliver better dynamic performance than the linear quadratic regulator (LQR) if the process model is proper. Stability, optimality, and constraint satisfaction regions for these controllers are identified.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 50 条
[21]   Dynamic State Feedback and Its Application to Linear Optimal Control [J].
Park, Jong-Koo ;
Park, Kiheon ;
Kuc, Tae-Yong ;
You, Kwan-Ho .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2012, 10 (04) :667-674
[22]   Dynamic state feedback and its application to linear optimal control [J].
Jong-Koo Park ;
Kiheon Park ;
Tae-Yong Kuc ;
Kwan-Ho You .
International Journal of Control, Automation and Systems, 2012, 10 :667-674
[23]   On infinite-time nonlinear quadratic optimal control [J].
Chen, Y ;
Edgar, T ;
Manousiouthakis, V .
SYSTEMS & CONTROL LETTERS, 2004, 51 (3-4) :259-268
[24]   Fuzzy Adaptive Output Feedback Optimal Control Design for Strict-Feedback Nonlinear Systems [J].
Sun, Kangkang ;
Li, Yongming ;
Tong, Shaocheng .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (01) :33-44
[25]   Nearly optimal state feedback control of constrained nonlinear systems using a neural network HJB approach [J].
Lewis, FL ;
Abu-Khalaf, M .
INTELLIGENT CONTROL SYSTEMS AND SIGNAL PROCESSING 2003, 2003, :219-230
[26]   OPTIMAL CONTROL WITH FEEDBACK OF SOME CLASS OF NONLINEAR SYSTEMS VIA QUADRATIC CRITERIA [J].
Afanas'ev, A. P. ;
Dzyuba, S. M. ;
Emelyanova, I. I. ;
Ramazanov, A. B. .
APPLIED AND COMPUTATIONAL MATHEMATICS, 2016, 15 (01) :78-87
[27]   Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria [J].
Çimen, T ;
Banks, SP .
SYSTEMS & CONTROL LETTERS, 2004, 53 (05) :327-346
[28]   On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems [J].
Kang, W. ;
Gong, Q. ;
Ross, I. M. ;
Fahroo, F. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2007, 17 (14) :1251-1277
[29]   Decentralized Linear Feedback Optimal Control of Large-Scale Nonlinear Systems [J].
Sun, Liang ;
Wang, Xia ;
Fan, Ming-Qu .
2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, :3529-3534
[30]   Minimal Time Control of Nonlinear Systems: Optimal Robust State-Feedback [J].
Hammer, Jacob .
IFAC PAPERSONLINE, 2019, 52 (16) :108-113