On Three-Dimensional CR Yamabe Solitons

被引:3
作者
Cao, Huai-Dong [1 ,2 ]
Chang, Shu-Cheng [3 ,4 ]
Chen, Chih-Wei [3 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
[2] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[3] Natl Taiwan Univ, Dept Math, Taipei 10617, Taiwan
[4] Natl Taiwan Univ, TIMS, Taipei 10617, Taiwan
关键词
CR Harnack quantity; CR Yamabe soliton; CR Paneitz operator; HARNACK-ESTIMATE; FLOW; CURVATURE;
D O I
10.1007/s12220-017-9822-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the geometry and classification of three-dimensional CR Yamabe solitons and pseudo-gradient CR Yamabe solitons. In the compact case, we obtain a classification result of three-dimensional CR Yamabe solitons under the assumption that their potential functions are in the kernel of the CR Paneitz operator. In addition, we obtain a structure theorem on the diffeomorphism types of complete three-dimensional pseudo-gradient CR Yamabe solitons (shrinking, steady, or expanding) of vanishing torsion.
引用
收藏
页码:335 / 359
页数:25
相关论文
共 34 条
[1]  
[Anonymous], 1985, Workshop Bonn 1984 (Bonn, 1984)
[2]  
[Anonymous], ARXIVMATHDG0303109
[3]  
Cao HD, 2012, MATH RES LETT, V19, P767
[4]   Pseudo-Einstein and Q-fiat metrics with eigenvalue estimates on CR-hypersurfaces [J].
Cao, Jianguo ;
Chang, Shu-Cheng .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) :2839-2857
[5]   ON THE GLOBAL STRUCTURE OF CONFORMAL GRADIENT SOLITONS WITH NONNEGATIVE RICCI TENSOR [J].
Catino, Giovanni ;
Mantegazza, Carlo ;
Mazzieri, Lorenzo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (06)
[6]  
Chang D.-C., ASIAN J MAT IN PRESS
[7]  
Chang S.-C., 2011, P 15 INT WORKSH DIFF, V15, P57
[8]   The Harnack estimate for the Yamabe flow on CR manifolds of dimension 3 [J].
Chang, SC ;
Cheng, JH .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (02) :111-121
[9]   A fourth order curvature flow on a CR 3-manifold [J].
Chang, Shu-Cheng ;
Cheng, Jih-Hsin ;
Chiu, Hung-Lin .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1793-1826
[10]  
Chang SC, 2010, T AM MATH SOC, V362, P1681