Excess Thermopower and the Theory of Thermopower Waves

被引:58
作者
Abrahamson, Joel T. [1 ]
Sempere, Bernat [1 ,3 ]
Walsh, Michael P. [1 ]
Forman, Jared M. [1 ,2 ]
Sen, Fatih [1 ,4 ]
Sen, Selda [1 ,5 ]
Mahajan, Sayalee G. [1 ]
Paulus, Geraldine L. C. [1 ]
Wang, Qing Hua [1 ]
Choi, Wonjoon [1 ]
Strano, Michael S. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
[3] Univ Ramon Llull, Inst Quim Sarria, Barcelona 08022, Spain
[4] Dumlupinar Univ, Dept Chem, TR-43020 Kutahya, Turkey
[5] Middle E Tech Univ, Dept Chem, TR-06531 Ankara, Turkey
关键词
thermopower waves; carbon nanotubes; thermoelectric; chemical potential; electronic doping; energy storage; THERMOELECTRIC-POWER; CARBON NANOTUBES;
D O I
10.1021/nn402411k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self propagating exothermic chemical reactions can generate electrical pulses when guided along a conductive conduit such as a carbon nanotube. However, these thermopower waves are not described bran existing theory to explain the origin of power generation or why its magnitude exceeds the predictions of the Seebeck effect In this work, we present a quantitative theory that describes the electrical dynamics of thermopower waves, showing that they produce an excess thermopower additive to the Seebeck prediction. Using synchronized, high-speed thermal, voltage, and wave velocity measurements, we link the additional power to the chemical potential gradient created by chemical reaction (up to 100 mV for picramide and sodium azide on carbon nanotubes). This theory accounts for the waves' unipolar voltage, their ability to propagate on good thermal conductors, and their high power, which Is up to 120% larger than conventional thermopower from a fiber of all-semiconducting SWNTs. These results underscore the potential to exceed, conventional figures of merit for thermoelectricity and allow us to bound the maximum power and efficiency attainable for such systems.
引用
收藏
页码:6533 / 6544
页数:12
相关论文
共 33 条
[1]   Wavefront Velocity Oscillations of Carbon-Nanotube-Guided Thermopower Waves: Nanoscale Alternating Current Sources [J].
Abrahamson, Joel T. ;
Choi, Wonjoon ;
Schonenbach, Nicole S. ;
Park, Jungsik ;
Han, Jae-Hee ;
Walsh, Michael P. ;
Kalantar-zadeh, Kourosh ;
Strano, Michael S. .
ACS NANO, 2011, 5 (01) :367-375
[2]   Analytical Solution to Coupled Chemical Reaction and Thermally Diffusing Systems: Applicability to Self-Propagating Thermopower Waves [J].
Abrahamson, Joel T. ;
Strano, Michael S. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24) :3514-3519
[3]   Modelling the increase in anisotropic reaction rates in metal nanoparticle oxidation using carbon nanotubes as thermal conduits [J].
Abrahamson, Joel T. ;
Nair, Nitish ;
Strano, Michael S. .
NANOTECHNOLOGY, 2008, 19 (19)
[4]   Thermoelectric power of aligned and randomly oriented carbon nanotubes [J].
Baxendale, M ;
Lim, KG ;
Amaratunga, GAJ .
PHYSICAL REVIEW B, 2000, 61 (19) :12705-12708
[5]   Is the intrinsic thermoelectric power of carbon nanotubes positive? [J].
Bradley, K ;
Jhi, SH ;
Collins, PG ;
Hone, J ;
Cohen, ML ;
Louie, SG ;
Zettl, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (20) :4361-4364
[6]   Carbon nanotube-guided thermopower waves [J].
Choi, Wonjoon ;
Abrahamson, Joel T. ;
Strano, Jennifer M. ;
Strano, Michael S. .
MATERIALS TODAY, 2010, 13 (10) :22-33
[7]  
Choi W, 2010, NAT MATER, V9, P423, DOI [10.1038/nmat2714, 10.1038/NMAT2714]
[8]   Carbon nanotubes: Synthesis, integration, and properties [J].
Dai, HJ .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1035-1044
[9]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[10]   Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly [J].
Farhat, H. ;
Son, H. ;
Samsonidze, Ge. G. ;
Reich, S. ;
Dresselhaus, M. S. ;
Kong, J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (14)